Water, Weather and Climate Services for Africa, the cases of Ghana and Kenya

Frank Ohene Annor, Nick van de Giesen, and Marie-Claire ten Veldhuis
Department of Water Resources, Delft University of Technology, Delft, Netherlands
info@twiga-h2020.eu

May 2020

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
Introduction to the TWIGA project

The objective of the project is to provide currently unavailable geo-information on weather, water and climate for sub-Saharan Africa by enhancing satellite-based geo-data with innovative in situ sensors and developing related information services that answer needs of African stakeholders and the GEOSS community.
Sensors in TWIGA Countries

Ghana
Kumasi DTS, UAV, TAHMO, VegMon, Plastic CS

Tamale Disdro, Rainfall CS, DTS, TAHMO, VegMon

Navrongo VegMon, TAHMO

Uganda
Entebbe GNSS, TAHMO

Bugame GNSS, TAHMO

Kenya
Narok Disdro, Soil moisture, TAHMO, Evaporometers, VegMon

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
Mapped Services

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
TWIGA Services in Ghana & Kenya

Implemented

<table>
<thead>
<tr>
<th>SN</th>
<th>Service</th>
<th>Description of Service</th>
<th>TWIGA Innovations/Data requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How humid is my environment</td>
<td>Provide estimates of how wet the soil is in five classes: very dry, dry, moist, very moist, and saturated. "Very dry" corresponds with wilting point and "very moist" with field capacity.</td>
<td>Thermal imagery from UAVs, Sentinel-1, DTS, Evaporometers, Low-cost soil moisture sensors and TAHMO stations</td>
</tr>
<tr>
<td>2</td>
<td>Crop insurance based on soil index</td>
<td>The crop insurance product uses soil moisture conditions for pay-outs instead of only rainfall (this include yield and germination insurance). The soil moisture is determined using satellites and soil moisture probes and DTS in 2 pilot locations (Districts) - one each in Northern and Southern Ghana.</td>
<td>Farmerline’s Mergdata Platform, Sentinel-1 derived soil moisture products, Disdrometers, TAHMO Stations, HydroNet Platform, Soil moisture sensors including Teros-12</td>
</tr>
<tr>
<td>3</td>
<td>Short-term prediction for solar energy</td>
<td>By extrapolating cloud movements and daily cloud formation patterns, it is possible to develop a short-term prediction for the amount of solar radiation reaching the surface. This information will be useful for energy managers that include large solar farms. TAHMO data is used to train the model and assess the results.</td>
<td>TAHMO stations, Satellite Data and Models</td>
</tr>
<tr>
<td>4</td>
<td>EWS for clogging of drains</td>
<td>Urban drainage networks in Africa tend to clog at bottlenecks with discarded plastic. A camera is used to take regular pictures and transform the image into a simple measure of accumulation. This information will be sent to the web. Warnings can be issued to municipalities and/or plastic collectors.</td>
<td>GNSS network for early warning system, Disdrometers (intervalometers), Flood Mapping App, TAHMO stations</td>
</tr>
<tr>
<td>5</td>
<td>EWS for heavy rains</td>
<td>Mapping open water floods and vegetated flooded areas, combining satellite remote sensing with UAV. Products: River cross-sections and DEM + flood map + training</td>
<td>Sentinel-1 data, UAVs, Soil Moisture Sensors, Flood Mapping App, DEM, HydroNet platform</td>
</tr>
<tr>
<td>6</td>
<td>Crop detection and condition monitoring (crop doctor)</td>
<td>Crop detection, crop stress monitoring</td>
<td>UAVs (NIR, NDVI), VegMon App</td>
</tr>
</tbody>
</table>

Pipeline

1. Route planning for agribusiness
2. Meteorological information for livestock – EWS
3. Meteorological information for plagues prediction
4. Vulnerability Indexes for Insurance
5. Wind forecast for wind energy
6. Water quality monitoring tool
7. Water availability
8. Post-disaster vector-borne diseases forecast
9. Downscaling seasonal forecast
10. Heatwave forecast/heat index
11. Fire danger index
12. Seasonal forecast (onset of rain, temp)
13. Forecast for fisheries (heavy rains over lakes/coastal areas)
14. Fog prediction
15. Thresholds for specific extremes
17. Flood Impact: Early warning flood forecasting
18. Erosion and landslide Risk
19. Basin Water Control Room
20. Energy flux maps
21. Drought monitoring forecasting
22. Drought/Flood vulnerability maps
23. Yield prediction
24. Pre-harvest crop status
25. Post-harvest crop status
Acceleration of TWIGA Innovations

<table>
<thead>
<tr>
<th>Innovation</th>
<th>TRL before Project</th>
<th>Status of Innovation</th>
<th>Current TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Euro neutron counter</td>
<td>1</td>
<td>Experimental stage at the Lab at the TU Delft and Oregon State University</td>
<td>3</td>
</tr>
<tr>
<td>Laser micro scintillometer</td>
<td>2</td>
<td>No TRL acceleration yet</td>
<td>2</td>
</tr>
<tr>
<td>Doppler radar rain sensor</td>
<td>3</td>
<td>No TRL acceleration yet</td>
<td>3</td>
</tr>
<tr>
<td>Evaporometer</td>
<td>4</td>
<td>Installed in an operational environment in Kenya (Narok test bed)</td>
<td>7</td>
</tr>
<tr>
<td>Accelerometer tree weighing</td>
<td>4</td>
<td>No TRL acceleration yet</td>
<td>4</td>
</tr>
<tr>
<td>Intervalometer rain gauge</td>
<td>5</td>
<td>System complete and qualified and in continuous monitoring mode at selected sites in Kenya (Narok), and Ghana (Tamale)</td>
<td>8</td>
</tr>
<tr>
<td>Lightning tracking</td>
<td>6</td>
<td>These are operational in TAHMO stations (commercially available)</td>
<td>9</td>
</tr>
<tr>
<td>GNSS water vapour</td>
<td>6</td>
<td>System complete and qualified and in continuous monitoring mode at selected sites in Uganda</td>
<td>8</td>
</tr>
<tr>
<td>Flood mapper</td>
<td>7</td>
<td>Mobile phone app to map extent of flooding - System complete and qualified and in continuous monitoring mode at Aboabo, Kumasi in Ghana</td>
<td>8</td>
</tr>
<tr>
<td>Humidity Tracker</td>
<td>1</td>
<td>Operational within Farmerline Mergdata App - System complete and qualified and in continuous monitoring mode in Ghana</td>
<td>8</td>
</tr>
<tr>
<td>VegMon</td>
<td>1</td>
<td>Mobile phone app to monitor vegetation parameters - System complete and qualified and in continuous monitoring mode in Ghana (Tamale, Navrongo and Kumasi) and in Kenya (Narok)</td>
<td>8</td>
</tr>
<tr>
<td>Crop doctor</td>
<td>7</td>
<td>It is operation in Mozambique and Kenya</td>
<td>8</td>
</tr>
</tbody>
</table>
In situ sensors - Atmospheric moisture
Precipitable Water Vapor

High Quality Zenith Tropospheric Delay Estimation
Using a Low-Cost Dual-Frequency Receiver and Relative Antenna Calibration

Andreas Kriememeyer*, Hans van der Marel®, Nick van de Giesen®
and Marie-Claire ten Veldhuis®

Faculty of Civil Engineering, Delft University of Technology, 2628CN Delft, The Netherlands;
H.vanderMarel@tudelft.nl (H.v.d.M.); N.C.vandeGiesen@tudelft.nl (N.v.d.G.);
ja.e.tenveldhuis@tudelft.nl (M.-C.t.V.)
* Correspondence: A.Kriememeyer@tudelft.nl

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
Getting Rainfall Right
Services: Agriculture, insurance, flood

Get handle on variability

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
In situ Sensors- Rainfall variability

Narok - Kenya: Disdros and Intervalometers

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
In situ Sensors- Rainfall variability

Nyankpala - Ghana: Disdros and Citizens

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
In situ Sensors- Soil moisture

Time series of soil moisture and precipitation at station TA00616 (Tamale). Soil moisture profiles show response rainfall: steep rise followed by a gradual decrease in soil moisture content over a period of up to ~25 days.

Teros-12 Nyankpala (Ghana)
In situ Sensors - Soil moisture

Distributed Temperature Sensing

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
In situ Sensors - Soil moisture

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
TWIGA Sensors: Soil moisture

SAR
Soil Moisture (Sentinel-1)

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
TWIGASensors: Flood

Kumasi (Ghana) water level

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
TWIGA Sensors: Flood

Kumasi (Ghana)- Does it drain?

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
TWIGA Sensors: Crop monitoring

VegMon ODK App – Jan Friesen

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.
TWIGA Platform

Platform

Application services

Backend services

Data services

Information services

Open protocols

SOS2 API

AgriCloud services

Models

Live connection
FTP
Excel importer

Time series (TAHMO, SAWS)
Events (lightning, pictures)
Grids (satellite, radar)
Model grids (weather forecast)

Distributed data sources

GEOSS
Copernicus

Other platforms

Web-portal and applications

Mobile apps

Live connection
FTP
Excel importer

TWIGA Portal Training – Nairobi 2019

TWIGA Portal

FTP
Excel importer

HydroLogic

GEOSS
Copernicus
This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission’s opinions. The European Union is not liable for any use that may be made of the information.