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Motivation

It has become a standard at major NWP centers to use stochastic

physics to represent uncertainty in the parameterizations of subgrid

physical processes. Specifically, stochastic physics is required in the

UFS for

(1) mitigating model error in data assimilation,

(2) improving the probabilistic skill of ensemble forecasts, and

(3) developing S2S stochastic prediction methods.



Available methods for representing model uncertainty in the UFS

• Stochastically Perturbed Physics Tendencies (SPPT) scheme: simulates 
uncertainty due to sub-grid parameterizations (Palmer et al., 2009)

• Stochastic Kinetic Energy Backscatter Scheme (SKEB): parameterizes a 
missing and uncertain process (Palmer et al., 2009)

• Stochastically-perturbed boundary-layer humidity (SHUM) scheme: 
perturbs boundary layer humidity following Tompkins and Berner (2008)

• VC scheme: vorticity confinement based on Sanchez et al (2012)

All use stochastic random pattern generators to generate spatially and 
temporally correlated noise
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An example: the SPPT scheme

N = 5 in the GEFS:

1. Radiation
2. Surface fluxes
3. Turbulent mixing and gravity wave drag
4. Convection
5. Microphysics

Physics tendencies of four variables are randomly 
perturbed:
U, V, T, q

The random perturbation is invariant vertically but 
tapered in the boundary layer and stratosphere
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(adapted from ECMWF)

Methods for representing model uncertainty in the UFS



Peter Bauer et al. (2015)

Unified framework for simulating uncertainty in subgrid physics 
parameterizations



Seeking a general theoretical framework consistent with the 
Correspondence Principle

A new theory or parameterization should not reject the previous correct 
theory or parameterization but rather generalize them, so that the old 
(previous) theory or parameterization becomes a particular case of the 
new one...  While the formulation of the correspondence principle is 
simple, it is nevertheless a very powerful methodological tool in 
understanding natural phenomena and developing correct generalizations 
of the existing theories and parameterizations.

Adapt from “Thermodynamics, Kinetics, and Microphysics of Clouds”
by Khvorostyanov and Curry (2014)



We have identified that model uncertainty associated with subgrid

physics can be expressed as a stochastic perturbation that is the sum of 

two terms:

(𝜕𝜕𝛿𝛿𝒙𝒙/𝜕𝜕𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑] +
[𝑠𝑠𝑡𝑡𝑚𝑚𝑑𝑑𝑠𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑 𝑝𝑝𝑚𝑚𝑚𝑚𝑡𝑡𝑝𝑝𝑚𝑚𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑𝑚𝑚𝑑𝑑
𝑚𝑚𝑜𝑜 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑚𝑚𝑑𝑑𝑑𝑑 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠(𝑚𝑚𝑠𝑠)]

Bengtsson, L., Bao, J.-W., Pegion, P., Penland, C., Michelson, S., Whitaker., J. 2019: A model 
framework for stochastic representation of uncertainties associated with physical processes in 
NOAA’s Next Generation Global Prediction System (NGGPS).  Mon. Wea. Rev., 147, 893-911.

How to simulate uncertainty in subgrid physics parameterizations



�̇�𝒙 = 𝑴𝑴 𝒙𝒙(𝑡𝑡) , 𝒙𝒙 0 = 𝒙𝒙0

𝒙𝒙 = �𝒙𝒙 + �𝒙𝒙 = [resolved] + [unresolved]

1. Kondrashov, D., Chekroun, M. D., and Ghil, M., 2015: Data-driven non-Markovian closure
models. Physica D, 297, 33–55.

2. Wouters, J., and Lucarini, V., 2013: Multi-level dynamical systems: Connecting the Ruelle
response theory and the Mori-Zwanzig approach.  J. Stat. Phys., 151, 850-860.

Theory for the unified framework: Coarse-graining a model to a 
reduced resolution



• Rewrite model as the so-called Liouville equation:

𝜕𝜕𝒛𝒛
𝜕𝜕𝑡𝑡

= 𝑳𝑳𝒛𝒛 𝒙𝒙, 𝑡𝑡 , 𝒛𝒛 𝒙𝒙, 0 = 𝒂𝒂(𝒙𝒙)

where the Liouville operator is defined as

𝑳𝑳 = 𝑴𝑴 � 𝛻𝛻

1. Ehrendorfer, Predicting the uncertainty of numerical weather forecasts: a review, Meteorol. Zeitschrift. 1997. 
2. Chorin et al., Optimal prediction and the Mori-Zwanzig representation of irreversible processes, PANS, 2000.

Theory for the unified framework: Coarse-graining a model to a 
reduced resolution



Use the Mori-Zwanzig projection operators to map the Liouville equation 
onto the resolved and sub-grid variables: P is the projection to map 𝒛𝒛 onto 
the grid-resolved variables and Q = I – P is the projection to map 𝒛𝒛 onto the 
subgrid variables

�̇𝒙𝒙 = 𝒆𝒆𝑡𝑡𝑳𝑳𝑷𝑷𝑳𝑳�𝒙𝒙0 + ∫0
𝑡𝑡 𝒆𝒆 𝑡𝑡−𝑠𝑠 𝑳𝑳𝑷𝑷𝑳𝑳𝒆𝒆𝑠𝑠𝑸𝑸𝑳𝑳𝑸𝑸𝑳𝑳�𝒙𝒙0𝑑𝑑𝑠𝑠 + 𝒆𝒆𝑡𝑡𝑸𝑸𝑳𝑳𝑸𝑸𝑳𝑳 �𝒙𝒙0

Resolved 
dynamics

“memory" term because 
it is an integration of 
quantities that are 
dependent on the model 
state at earlier times

“noise” term, 
representing the 
unresolved 
dynamics

Theory for the unified framework: Coarse-graining a model to a 
reduced resolution



𝛿𝛿𝒙𝒙(𝑡𝑡 + Δ𝑡𝑡) = 𝜙𝜙𝛿𝛿𝒙𝒙(𝑡𝑡) + 𝜌𝜌𝜌𝜌(𝑡𝑡)∆𝑡𝑡 𝑑𝑑𝒙𝒙(𝑡𝑡)/𝑑𝑑𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 ,

1. Horenko et al., Data-based parameter estimation of generalized multidimensional Langevin processes, Phys. Rev. E., 2007.
2. Shutts, A stochastic convective backscatter scheme for use in ensemble prediction systems, Q.J.R. Met. Soc., 2015.

In the physics literature, stochastic processes described by the generalized Langevin
equation are called multi-dimensional Langevin Processes (MLPs).  Two approaches have 
been pursued to reduce the stochastic simulation of model uncertainty from the generalized 
Langevin equation to either (1) autoregressive models, AR(q) or (2) autoregressive moving 
average models, ARMA(q, p).  Thus, the minimal form of the MLP for model uncertainty 
simulation is the following AR(1) process

Introducing the multidimensional Langevin process (MLP)

which is a dimensional analogy to the SPPT weight pattern generator

�̂�𝑚(𝑡𝑡 + Δ𝑡𝑡) = 𝜙𝜙 �̂�𝑚(𝑡𝑡) + 𝜌𝜌𝜌𝜌(𝑡𝑡)
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Stochastic perturbations at forecast time 36 h at level 534 mb

Initial Time: 00 UTC Aug 1 2014, C192
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Stochastic perturbations at forecast time 36 h at level 534 mb

Initial Time: 00 UTC Aug 1 2014, C192
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5-day forecasts, 850 mb U-component of wind RMSE and Spread
Initial Times: 00 UTC Aug. 1-5 2014, C192 
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5-day forecasts, 850 mb Temperature RMSE and Spread
Initial Times: 00 UTC Aug. 1-5 2014, C192 



Conclusions

• We are accelerating the stochastic physics development in the UFS 
using a unified theoretical framework to account for uncertainty in 
subgrid physics.

• The unified theoretical framework is based on the application of 
multi-dimensional Langevin Processes (MLPs).

• An MLP can be used for simulating model uncertainty in any 
subgrid transport process, including turbulent fluxes.

• Preliminary testing in NOAA’s UFS shows promise in increasing 
ensemble spread while reducing RMSE.
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