

Deltares

Testing the distributed hydrological wflow_sbm concept across different geographical domains

Albrecht Weerts, Willem van Verseveld, Dirk Eilander, Helene Boisgontier, Arjen Haag, Pieter Hazenberg, and Ruben Imhoff

April 2020

Introduction

- Wflow_sbm, a distributed hydrologic model, fits well between low-resolution, low-complexity and high-resolution, high-complexity hydrologic models:
 - gravity-based infiltration and vertical flow throught the soil column as well as capillary rise represents a simplified version of the Richards' equation. A1-D kinematic wave approach for channel, overland and lateral subsurface flows similar to TOPKAPI (Todini and Ciarapica, 2002), G2G (Bell et al., 2007), 1K-DHM (Tanaka and Tachikawa, 2015) and Topog_SBM (Vertessy and Elsenbeer, 1999) is used as an approximation for dynamic waves and variably saturated subsurface flow (Richards' equation).
 - The advantage of this approach is that most wflow_sbm parameters have a clear physical meaning and at the same time
 wflow sbm has a run time performance well suited for large scale modelling.
- This allows us to automatically setup a high resolution (~1km²) wflow_sbm model for any basin in the world:
 - We apply available point-scale (pedo)transfer functions (PTFs) with upscaling rules (see Imhoff et al., 2020) to global datasets to ensure flux matching across scales (Samaniego et al., 2010, 2017)
 - A new method ("Connecting Outlets Method" (COM)) to automatically upscale flow direction data to model resolution shows promising results (Eilander et al., in prep, "Global multi-resolution hydrography data")
- As a final result we have a calibration-less wflow_sbm model:
 - depending on the geographical area of interest two model parameters, besides anthropogenic interference like reservoir and lake management, show most sensitivity: rooting depth and horizontal saturated hydraulic conductivity.
- Here we test the wflow_sbm concept across different geographical domains (USA, Europe, Africa, New Zealand and more testing and applications are underway)

Wflow_sbm (simple bucket model)

Part of wflow, the Deltares' OpenStreams project, an open source modelling framework for distributed hydrologic modelling

Loosely based on Topog_SBM (Vertessy and Elsenbeer, 1999), main differences:

- Addition of evapotranspiration and interception losses.
- addition of a root water uptake reduction function (Feddes et al., 1978).
- addition of capillary rise.
- addition of glacier and snow build-up and melting processes (where relevant).
- routes water over an eight direction (D8) network
- multiple soil layers optional

See also:

https://wflow.readthedocs.io/en/latest/wflow_sbm.html https://wflow.readthedocs.io/en/latest/

Wflow_sbm processes and modules

Schematisation of the soil and the connection to the river within the wflow_sbm model

Estimation of wflow_sbm parameters

- Based on earlier work by Imhoff et al (2020) that focused on the entire Rhine basin.
- Using available point-scale (pedo)transfer functions (PTFs) with upscaling rules to ensure flux matching across scales (Samaniego et al., 2010, 2017, Imhoff et al., 2020)
- Data sets (global) used to setup a wflow_sbm model for any basin in the world (Python scripts):
 Soil:
 - SoilGrids (Hengl et al. (2017)) at ~250 m resolution
 - Depth to impermeable layers for Europe (ESDAC, 2004)

Land cover:

GlobCover-2009 (Arino et al., 2010) at ~300 m resolution

Hydrography (flow direction, upstream area, stream order, river slope β_{river} , river length L_{river} , river width W_{river})

- MERIT Hydro (Yamazaki et al., 2019) at ~90 m resolution
- Discharge data from Global Runoff Data Center (GRDC)
- CHELSEA dataset at ~1 km resolution (Karger et al., 2017)
- Köppen–Geiger climate zone map (Kottek et al., 2006)

Lake and reservoir model parameters:

- HydroLAKES Version 1.0 (Messager et al., 2016)
- GRanD v1.01 (Lehner et al., 2011)
- GWSO (Pekel et al., 2016) extracted with https://github.com/openearth/hydro-engine

Wflow_sbm parameter estimation (global)

PTFs and upscaling operators

A = arithmetic mean

 λ = pore size distribition index (Brooks Corey, 1964)

Parameter	PTF by	Upscaling operator	Additional notes
С	Rawls and Brakensiek (1989)	$\log A$	λ upscaled with $\log A$, c determined from λ at model resolution
k	Van Dijk and Bruijnzeel (2001)	Α	Look-up table from land cover
kv	Brakensiek et al. (1984)	$\log A$	For the soil depths z: 0, 5, 15, 30, 60, 100 and 200 cm
LAI	Myneni et al. (2015)	Α	
М			Fitting exponential function between kv and z
N_{land}	Engman (1986); Kilgore (1997)	Α	Lookup table land cover
N_{river}	Liu et al. (2005)	Α	Lookup table land cover
RTD	Schenk and Jackson (2002); Fan et al. (2016)	Α	d_{75} rooting depth, lookup table land cover
Sl, S_{wood}	Pitman (1989); Liu (1998)	Α	Lookup table land cover
β_{river}, L_{river}			Based on MERIT Hydro
W_{river}			Based on MERIT Hydro, GRDC, CHELSEA, Köppen–Geiger climate zones
eta_{land}	Horn (1981)	Α	Based on MERIT Hydro
Soilthickness	Hengl et al. (2017); ESDAC (2004)		
θ_s , θ_r	Tóth et al. (2015)	Α	

wflow_sbm parameter upscaling

Imhoff, R. et al., Water Resources Research, 2020.

White Nile (upstream of Juba)

• Use of CHIRPS for rainfall, downscaled ERA5 for estimating PET (de Bruin et al., 2016)

Ksathorfrac=100 (lateral conductivity)

In collab with Nynke Hofstra

Save river (CHIRPS rainfall and ERA5 Temperature and PET de Bruin et al 2016)

Conclusions

wflow_sbm derived with the Deltares wflow_sbm global setup seem to give reasonable results for many places

However (and not surprising) sensitive to

- rainfall forcing (CHIRPS in Africa, ERA5 in Scandinavia, EOBS/ERA5, NIWA dataset New Zealand)
- rooting depth (especially Africa ⇔ often needs adjustments seem to agree with Yang et al 2016 WRR)
- lateral hydraulic conductivity (ksathorfrac often in order 1-100)
- human activity (hydropower)
- underlying global datasets (for instance landuse as used for effective rooting depth)

wflow_sbm & wflow_sbm global setup improvements:

- a priori reservoir parameters seem to give reasonable estimates (Errol, Lake Victoria, Harrsele KRV)
- wetlands, lakes (not well modelled yet)
- rooting depth approach (fractions)
- better routing for flat rivers
- update global datasets

Avoiding calibration makes forcing datasets more comparable, however further sensitivity analysis needed especially for ksathorfrac (no PTF) and effective rooting depth.

