

Local high-energy particles measurements for detecting primary cosmic-ray variations: application for soil moisture estimation

L. Stevanato¹, G. Baroni², C. Fontana¹, M. Lunardon¹, S. Moretto¹, P. Schattan³

(1) Università degli Studi di Padova, Dipartimento di Fisica ed Astronomia, Padova, Italy

(2) Università di Bologna, Dipartimento di Scienze e Tecnologie Agro-Alimentari, Bologna, Italia

(3) University of Innsbruck, Institute of Geography / alpS Research

EGU2020 – Sharing science online

Cosmic rays neutron sensing

Current measurements capability

Kohli, M. et al. (2015), Water Resour. Res., 51: 5772–5790

Corrections:

- By atmospheric pressure,
- By air humidity,
- Biomass
- By temporal fluctuations of incoming cosmic rays (by existing databases of neutron monitoring worldwide stations e.g., Kiel, Germany,

Measuring SWE aboveground with CRNS

Advantages

- Large footprint -> averaged over 25 hectares
- Easy to maintenance -> out from snowpack
- High durability -> Not buried into the snow
- Insensitivity to soil moisture (over 30 cm of snow)

Finapp @ Kaunertal Glacier

Neutron variations @ Kaunertal

During 2018/19 winter there was articular condition with more than 1000mm of SWE and a completed saturated neutron signal from january

Finapp @ Kaunertal - SWE aboveground

Finapp @ Kaunertal - Zoom on spring

Neutron drop in a saturated signal, incoming?

Why is it so important to measure incoming?

Incidental cosmic radiation can vary considerably over periods ranging from a few days to several months/years. These variations may be due to astronomical events such as solar cycles, solar flares, Forbush events, etc.

Cosmic-Ray Snow Gauges example

The signal measured on the site has to be corrected by the incidental CR variations measured by a reference sensor which is protected from the snow at a latitude close to the mountain sensors (Moscow, Ouly-Finland, Athens)

At the end of October 2003, in 3 days the radiation dropped by almost 18%.

Fig. 5 – Moscow gauge – Relative variations of cosmic radiation (2003-2004 season, September 2002 reference level)

How was managed the cosmic ray fluctuations until now? <u>Neutron Monitor</u> <u>DATABASE</u>: 40 stations over the world

Finapp measures cosmic variations

Finapp can measure locally the cosmic-rays fluctuations The probe is completely autonomous

Comparison mean(AATB, ATHN, BKSN, JUNG) vs. FINAPP

Finapp measures cosmic variations

Pressure correction for muon varies with altitude

Altitude	Beta	Muon cph
Sea level	0.0020	4.500
1300 m	0.0028	6.000
1918 m	0.0035	9.800
2700 m	0.0042	12.000