Towards understanding nitrogen legacies in European catchments
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Nitrogen (N) compounds present in the Weser river are contributing
to the eutrophication of the North sea

Time series of total nitrogen inputs via Germany’s inflows into the North Sea, 1980-2015;
for the river Eider, data is only available from 1990 onwards
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/ Source: German Environment Agency using data supplied by the Laender for seporting under OSPAR, as of 2016

Largest German'‘s national River Basin

@ Authors. All rights reserved. fanny.sarrazin@ufz.de www.ufz.de 2



Soil N-surplus, mostly over agricultural areas, is responsible for
stream nitrate (NO3) pollution in t
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... but a large fraction of the excess N mass is
unaccounted for (not found in the stream).
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Are soil and groundwater N legacies building up in the Weser basin?

N-mass balance (1981-2015)

Excess N Denitrification losses
« It is critical to understand the build-up 58.3 kgha~'yr™" 22? kgha lyr~!
of nitrogen legacy stores over time, as 1 f
they can have a large impact on future

stream N loading, and thus
compromise the achievement of
reduction goals for N levels.

* We apply a mechanistic nitrate model Legacies |
to assess the fate of excess N (lost
through denitrification or stored in the A Groundwater storage
system — soil or groundwater). ?2? kghalyr™
Nitrate stream loading
12.8 kgha lyr~1!
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We use a parsimonious modelling approach: ELEMENT model

+ allows for investigation of long term N
trajectories at catchment scale and annual Source
time scale Zone

* accounts for legacies in soil and groundwater Moo Nirogen Loadin Trectories
° three N pOOIS in the SO” (Ol’ganic aCtive, Fertilizer, Atm Dep)

organic protected and inorganic NO3) . WLL . e
« one N pool in the groundwater (inorganic

Active Protected Convolution of Source Zone Losses with

SON SON Watershed Travel Time Distribution
NO3) (M,) (M,) Backgroune
Parameter Description | . l
- - — - Mineralization E [ .
Morgn [kg ha™'] Soil organic N stock under pristine conditions o5
o S c 3 M= [T T (-DFDeTdr+ e

bnf, [kg ha™'] N-surplus under pristine conditions (i.e. biological fixation) £z :
he [-] Soil organic N protection coefficient for cropland E
hne [-] Soil organic N protection coefficient for non-cultivated land use
kg [yr™Y] Rate of mineralisation for soil active pool
Vi [mm] Mean annual soil water content
A [yr] Rate of denitrification in Soil [Van Meter et al., 2017, Global Biogeochem Cycles]
A [yr1] Rate of denitrification in groundwater
ulyr] Mean travel time in groundwater
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We estimate the 9 model parameters using soft rules to account for
uncertainties in the model inputs and in the output measurements
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sequentially applying soft rules, using the SAFE toolbox I
for sensitivity analysis (Pianosi et al., 2015). I
e We constrain the simulated current soil N content, o :
stream N loading and stream N concentration. g :
14
* For loading and concentration, we select simulations |
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We estimate the 9 model parameters using soft rules to account for
uncertainties in the model inputs and in the output measurements

T
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sequentially applying soft rules, using the SAFE toolbox
for sensitivity analysis (Pianosi et al., 2015).
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We estimate the 9 model parameters using soft rules to account for
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We estimate the 9 model parameters using soft rules to account for
uncertainties in the model inputs and in the output measurements
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* We reduce the number of behavioural parameter sets by
sequentially applying soft rules, using the SAFE toolbox
for sensitivity analysis (Pianosi et al., 2015).
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The behavioural simulation ensemble captures the observed stream
NO3 loading and concentration
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The behavioural simulations allows to estimate the different
components of the N mass balance.
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+ The excess N mass largely denitrifies.

« The soil N storage is increasing, while the
groundwater storage only shows limited variations.
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Conclusions and outlook

ELEMENT is able to reproduce the observed
stream NO3 loading and concentration in the
Weser basin at Hemelingen.

We separate the excess N into the different
components (denitrification, stream loading and
storage change), despite the uncertainty that
remains after parameter estimation (due to
equifinality).

Simulations show that large part of N is denitrified
(around 63% of excess N), but a substantial part is
also stored in the soil.

Future works will focus on different subbasins of
the Weser to understand how the fate of the
excess N varies spatially.

N mass balance for the Weser basin
at Hemelingen (1981-2015)

Denitrification losses

Excess N
", . 36.5kghalyr1
58.3kgha ™ tyr " g5y cr [33.9 30.2)

| 1

A Groundwater storage
-0.2 kgha lyr1!
(95% Cl: [-0.5, 0])

}

Nitrate stream loading
12.9 kgha lyr—?!
(95% ClI: [12.0, 14.2])
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Source of the data used for parameter estimation and references

* Source of the data used for the parameter estimation

Stream NOS3 concentration observations for the Weser at Hemelingen was obtained from the Flussgebietsgemeinschaft (FGG) Weser
data bank (https://datenbank.fgg-weser.de/weserdatenbank/#/).

Current soil N content observations for the Weser at Hemelingen was estimated from the LUCAS dataset (Ballabio et al., 2016, 2019)
available from the ESDAC (European Soil Data Centre, esdac.jrc.ec.europa.eu, European Commission, Joint Research Centre).
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