A Venus-like atmosphere on the early Earth from magma ocean outgassing

Paolo A. Sossi¹,²*
Antony D. Burnham³, James Badro², Antonio Lanzirotti⁴, Matt Newville⁴
Hugh St.C. O’Neill³

*corresponding author. Email address: paolo.sossi@erdw.ethz.ch

© The authors. All rights reserved
Planetary atmospheres

<table>
<thead>
<tr>
<th></th>
<th>Venus</th>
<th>Earth</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂/N₂ Initial atmosphere</td>
<td>?</td>
<td>????</td>
<td>?</td>
</tr>
<tr>
<td>CO₂/N₂ Present atmosphere</td>
<td>43.3</td>
<td>7.8 × 10⁻⁴</td>
<td>55</td>
</tr>
<tr>
<td>Total bars</td>
<td>92</td>
<td>1.013</td>
<td>0.0061</td>
</tr>
</tbody>
</table>

What did Earth’s first atmosphere look like?
Warm, little ponds

ON THE EARLY CHEMICAL HISTORY OF THE EARTH AND THE ORIGIN OF LIFE

By Harold C. Urey

Institute for Nuclear Studies, University of Chicago

Communicated January 26, 1952

Miller-Urey experiment (1952)

Reducing atmosphere \((\text{CH}_4-\text{NH}_3)\) on early Earth

Spark discharge in presence of \(\text{H}_2\text{O}\)

Produced ~23 amino-acids, some necessary for life

Did such an atmosphere exist?
A primary atmosphere?

Noble gases are depleted by orders of magnitude relative to major volatiles.
Secondary atmosphere

Earth has a secondary (i.e., post-nebular) atmosphere
Formed by magma ocean outgassing

Uncertainty as to the redox state of the early atmosphere

At equilibrium
\[f_{O_2} \text{ of mantle} = f_{O_2} \text{ of atmosphere} \]
Magma ocean – atmosphere link

\[Fe^{2+}O \text{ (silicate)} + \frac{1}{4} O_2 \text{ (atmosphere)} = Fe^{3+}O_{1.5} \text{ (silicate)} \]

At equilibrium between the magma ocean and the atmosphere,

\[
K = \frac{X(Fe^{3+}O_{1.5}) \gamma(Fe^{3+}O_{1.5})}{X(Fe^{2+}O) \gamma(Fe^{2+}O) f(O_2)^{0.25}}
\]

\[K = \exp \left(\frac{-\Delta G(r)}{RT} \right) \]

\text{Activity coefficients}

Fe3+/Fe2+ ratio of magma ocean at its surface at a given fO\textsubscript{2} depends on:

1) Composition
2) Temperature

Well known for basalts; unknown for peridotites
Experimental approach

Natural processes
- Adiabatic
- Constant amount of O

Experiments
- Isothermal
- Constant f_{O_2}

Fe dominant redox-sensitive species in planetary compositions

Approach: Use $\text{Fe}^{3+}/\text{Fe}^{2+}$ ratio as a proxy for oxygen content
Experimental Set-up

Molten silicate Earth in a controlled atmosphere

Aerodynamic laser levitation furnace, IPG, Paris

- Synthetic peridotite composition (~KLB-1) ≈ Earth’s mantle

<table>
<thead>
<tr>
<th></th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>MgO</th>
<th>CaO</th>
<th>FeO$^{(T)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>46.53</td>
<td>4.37</td>
<td>38.05</td>
<td>2.06</td>
<td>8.44</td>
</tr>
</tbody>
</table>

- Melted by aerodynamic levitation with 125 W CO$_2$ laser at 1900 ± 50 °C for ~ 30 s

- logf_{O_2} varied by changing gas mixture (O$_2$, Ar-CO$_2$-H$_2$) between ΔIW-1.5 and ΔIW+6.5

- Quenched to glass by cutting power to laser
Fe$^{3+}$/Fe$^{2+}$ in peridotite glasses

X-Ray Absorption Near-Edge Structure

- Fe K-edge at beamline 13 IDE, APS, Chicago
- Position of **pre-edge centroid** and **0.8 edge energy** correlate with Fe$^{3+}$/Fe$^{2+}$
- Calibrated by Fe$^{3+}$/Fe$^{2+}$ in synthetic MORB glasses determined by Mössbauer spectroscopy
- Uncertainty $\sim \pm 0.015$ relative on Fe$^{3+}/\Sigma$Fe
Oxidation state of Fe in peridotite

\[Fe^{2+}O \text{(silicate)} + \frac{1}{4}O_2 = Fe^{3+}O_{1.5} \text{(silicate)} \]

- Slope reflects the reaction stoichiometry (0.25 = ideal)
- Equilibrium constant of reaction is given by the intercept
- Reaction should tend towards ideality at high temperatures

Use of calibration requires estimation of Bulk Silicate Earth Fe\(^{3+}/\text{Fe}^{2+}\)
Fe$^{3+}$/Fe$^{2+}$ in peridotites

Canil et al., 1994; Canil and O’Neill, 1996

- Fe$^{3+}$/Fe$^{2+}$ correlated inversely with MgO (also other indices of melt depletion)
- Due to greater incompatibility of Fe$^{3+}$ compared to Fe$^{2+}$ during partial melting
- At the MgO content of the primitive mantle (36.77 wt. %), Fe$^{3+}$/∑Fe = 0.037 ± 0.005
Oxidation state of Fe in peridotite

\[Fe^{2+}O \text{ (silicate)} + \frac{1}{4} O_2 = Fe^{3+}O_{1.5} \text{ (silicate)} \]

- Presume present-day bulk silicate Earth (BSE) = magma ocean
- \(\text{Fe}^{3+}/\Sigma\text{Fe} \) of 0.037 (Canil et al. 1994) yields an \(f_O^2 \) depending on calibration for molten peridotite at liquidus temperature
- Fixes \(\text{CO}_2/\text{CO} \) and \(\text{H}_2\text{O}/\text{H}_2 \) ratios in atmosphere

Used to calculate composition of earliest atmosphere
Composition of early Earth atmosphere

To solve for speciation in an H-C-N-O atmosphere requires **3 constraints**

1) f_{O_2}
 Given by Fe^{3+}/Fe^{2+} in peridotite liquid

2) H/C

3) H/N
 Computed by

 i) *Bulk Silicate Earth abundances* (Hirschmann 2018)

 ii) *Solubility laws in peridotite* (e.g. Moore et al. 1998)
Composition of early Earth atmosphere

Atmospheric speciation calculated during closed-system cooling

Major volatile species at these conditions

<table>
<thead>
<tr>
<th>Atmosphere</th>
<th>High T</th>
<th>Low T</th>
</tr>
</thead>
<tbody>
<tr>
<td><IW (H/C = 5)</td>
<td>H₂, CO, H₂O</td>
<td>CH₄, N₂</td>
</tr>
<tr>
<td>>IW (H/C = 5)</td>
<td>H₂O, CO, H₂, CO₂</td>
<td>CO₂, N₂</td>
</tr>
<tr>
<td>H/C < 5 (~IW)</td>
<td>CO, CO₂</td>
<td>CO₂, N₂</td>
</tr>
<tr>
<td>H/C > 5 (~IW)</td>
<td>H₂O, H₂</td>
<td>CH₄, N₂, (NH₃)</td>
</tr>
</tbody>
</table>

BSE molar \(\text{H/C} \sim 5 \)
But likely lower as H solubility >> C solubility in magma ocean

We find composition of terrestrial atmosphere was ~Venus today
Planetary Atmospheres

<table>
<thead>
<tr>
<th></th>
<th>Venus</th>
<th>Earth</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$/N$_2$ Initial atmosphere</td>
<td>?</td>
<td>~35</td>
<td>?</td>
</tr>
<tr>
<td>CO$_2$/N$_2$ Present atmosphere</td>
<td>43.3</td>
<td>7.8×10^{-4}</td>
<td>55</td>
</tr>
<tr>
<td>Total bars</td>
<td>92</td>
<td>1.013</td>
<td>0.0061</td>
</tr>
</tbody>
</table>
Atmospheric Loss

\[\lambda_{esc} = \frac{mv_{esc}^2}{2k_B T} \]

“Escape parameter”

Loss is most efficient for:

1. Lighter masses (H)
2. Smaller bodies (low \(v_{esc} \))
3. Hotter atmospheres (high \(T_{exobase} \))

\[T_{exobase} = C \frac{F_{XUV}}{g} + T_{min} \]

Lammer et al. (2003)
Hydrogen Isotope Fractionation

Jeans Escape ($\lambda \gg 1$)

$$
\frac{\left(\frac{dt}{dm_H} \right)}{\left(\frac{dt}{dm_D} \right)} = \sqrt{\frac{m_D}{m_H}}
$$

Use D/H ratio to constrain hydrogen loss fraction

Earth retains liquid H$_2$O on its surface over geological timescales
Why H$_2$O counts - the Urey Reaction

$CaSiO_3 + CO_2 = CaCO_3 + SiO_2$

Reaction catalysed by the dissolution of CO$_2$ in water (Urey, 1952)

Global crustal recycling process on Earth helped C burial

Effective mechanism for drawing down atmospheric CO$_2$ levels

May occur over 100 Myr

Sleep et al. 2001
Development of life?

CO₂-N₂ atmospheres inefficient in synthesising amino-acids (glycine only; Schlesinger and Miller 1983)

AAs produced in presence of pH-buffered H₂O at ~7 with CaCO₃ (Cleaves et al. 2008)

Yields are halved compared with reducing atmospheres

Warm, little ponds?
Conclusions

• Calibrated dependence of Fe\(^{2+}/Fe^{3+}\) on \(f_O_2\) in peridotite liquids relevant to planetary magma oceans

• Earth had a neutral, Venus-like atmosphere produced by magma ocean outgassing

• Earth is bracketed heliocentrically by planets with CO\(_2\)-N\(_2\) (97:3) atmospheres

• Large mass and distance from Sun minimised H-loss on Earth compared to Venus and Mars

• Atmosphere underwent significant CO\(_2\) draw-down post magma-ocean on Earth