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Abstract

Early work in the field of Machine Learning (ML) for hydrologic prediction is showing significant potential. Indeed, it has provided
important and measurable advances toward prediction in ungauged basins (PUB). At the same time, it has motivated a new
research targeting important ML topics such as uncertainty attribution and physical constraints. It has also brought into
question how to best harness the wide variety of climatic and hydrologic data available today. In this work, we present initial
results employing transfer learning to combine information about meteorology, streamflow, surface fluxes (FluxNet), and snow
(SNOTEL) into a state of the art ML-based hydrologic model. Specifically, we will present early work demonstrating how
relatively simple implementations of transfer learning can be used to enhance predictions of streamflow by transferring learning
from flux and snow station observations to the watershed scale. Our work is shown to extend recently published results from
Kratzert et al. (2018) using the CAMELS data set (Newman et al. 2014) for streamflow prediction in North America.

m  Kratzert, F, Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall-runoff modelling using Long Short-Term
Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005-6022, https://doi.org/10.5194/hess-22-6005-2018, 2018a.

m  Newman; K. Sampson; M. P. Clark; A. Bock; R. J. Viger; D. Blodgett, 2014. A large-sample watershed-scale
hydrometeorological dataset for the contiguous USA. Boulder, CO: UCAR/NCAR. https://dx.doi.org/10.5065/D6MW2F4D
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http://pangeo.io/
http://xarray.pydata.org/en/stable/
https://dask.org/
https://jupyter.org/

The sparse data problem

e \We only measure meteorological
quantities in a few places

e Some quantities are relatively
common (e.g. precipitation and
temperature)

e While others are very sparse (e.g.
shortwave/longwave radiation)

e BUT we want evaluate our
hydrologic model everywhere
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North American meteorological stations.
Note the sparse distribution in the Western
US. Figure from Newman et al., 2015.



The sparse data problem

Variable Infiltration Capacity (VIC)

Hissipecals ydivion s Mods e Our hydrologic models have long assumed we

Cell Energy and Moisture Fluxes

G"“’“”Veg"°°°”e’”e have some knowledge of the fluxes at the land
surface
o e Many “processed based” models require

Canop; § ‘ . . .
: sub-daily forcings (“the big 7”):
Layer 1 £ Wy
S o Precipitation
Layer 2 e O Te m p e rat U re
Baseflow Curve
goﬁ o Shortwave Radiation
gl ¥ o Longwave Radiation
B‘L,aytarz Soim\;Y:;m. ‘c/vf O H u m id ity
o Pressure
An example processed based model, VIC. .
pep — o Wind Speed

VIC requires “the big 7” forcing variables.


https://vic.readthedocs.io/en/master/

An old solution

e Many approaches have been
developed to close the sparse
problem.

e Statistical approaches tend to
develop empirical relationships
between meteorological variables,
e.g..

MTCLIM, Thorton & Running, 1997

DAYMET, Thorton et al. 2014
GridMET, Abatzoglou 2013
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Diurnal Glimatology

You know it’s been around
when this is the best
resolution figure you can
find on the internet. (=
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https://www.ntsg.umt.edu/project/mt-clim.php

This workflow is employed in popular ML applications
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Rainfall-runoff modelling using Long Short-Term l
Memory (LSTM) networks

Black Box
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Study Questions

1.

Does training with derived variables (e.g.
VP, SW as in Kratzert et al. 2018) contribute
to additional model skill?

Can we encode the “derivation” inside the
ML model itself, enabling transfer learning
from disparate data sources?



Part 1: Setup

Data: Camels NA

All basins W of -105°W

126 (50%) training, 42 (25%) validation, 42 (25%) holdout
Same preprocessing as in Kratzert et al. 2018

Two Simple LSTMs:

1.
2.

“3var”: Q = LSTM(PreClp/
“Byvar”: Q = LSTM(PreClpI
[same as Kratzert]
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Camels NA stations used in this study.
Colors represent mean basin elevation
(m) and circle sizes represent the size of
the basin.


https://ral.ucar.edu/solutions/products/camels
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Part 1: Results
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(Left) Hydrographs for 4
random out-of-sample
basins.
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(Right): CDF of the

nash-sutcliffe efficiency
(NSE) for the 42 holdout 021
basins.
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Including Daymet shortwave radiation and
vapor pressure does not meaningfully
improve model performance.

NSE is not the only metric we should explore.

What about transferability, stability, and
physical consistency. (Needs more work)
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Part 2: Setup

3 or 5-var

‘ LSTM_input: InputLayer

l

LSTM: LSTM

l

main_output: Dense

Two Neural Nets, “3var” (Part 1) and a Transfer Learning configuration

Inputs: Precip, Tmin, Tmax

Frozen “pass through” layers

Frozen “pre-trained” layers

Transfer Learning

‘ main_input: InputLayer

—

Istm_sw: LSTM Istm_vp: LSTM Istm_pcp_untrainable: Dense Istm_tmax_untrainable: Dense Istm_tmin_untrainable: Dense

!

4

l |

dense_sw: Dense dense_vp: Dense dense_pcp_untrainable: Dense dense_tmax_untrainable: Dense dense_tmin_untrainable: Dense

\//

concatenate_47: Concatenate

streamflow_lstm: LSTM

main_output: Dense
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Part 2: Results
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(Left) Hydrographs for 4
random out-of-sample
basins.

(Right): CDF of the
nash-sutcliffe (NSE)
efficiency for the 42 holdout
basins.

In most basins, transfer learning leads to modest

improvements in NSE.

Main takeaway points:

e Itis possible to “wire” a transfer learning
workflow into the Kratzert LSTM.

e More research is needed to understand why
some basins do better without additional data?
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e [Training Sites ¢
@ Validation Sites ¥

Pre-training with model data

e Few high-quality flux tower observations
exist (~200 long term Fluxnet sites)

e Strong sample bias toward NA and Europe

e Could we use global reanalysis to pre-train
the meteorological parts (SW, LW, VP,
Pres.) of our transfer learning model
before training (tuning) on the flux tower
data?



https://github.com/jhamman/met-ml

Next steps and conclusions

The work shown here is in very early stages. Looking for feedback and
suggestions...

1. Our transfer learning models have, in total, more tunable parameters. What is
the best way to normalize for model complexity?

2. Part 2 was still a bit of a toy example. We need to develop a holistic strategy
for transferring information from various data sources & scales.

3. Toward compositional ML for hydrology -- what are the ResNet/ImageNet
equivalents for streamflow prediction?



Thanks!

Get in touch if you have questions about these ideas or if you are interested in
collaborating.

Email: jhamman@ucar.edu

Github: https://github.com/jhamman/met-ml
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