Impact of ocean resolution and mean state on the rate of AMOC weakening.


Does resolution affect the rate of AMOC weakening?
Medium resolution HadGEM3 has a stronger AMOC in the control and a greater weakening, both absolute and fractional weakening.

CMIP6 models: HadGEM3-GC3.1
- LR = N96 ORCA1
  (1 degree ocean)
- MR = N216 ORCA025
  (0.25 degree ocean)

Use 1% CO2 increase scenarios.

Where do AMOC changes originate?
- Overturning in density space is equivalent to transformation of density which largely occurs through surface fluxes
- We use fluxes to calculate implied overturning changes (not shown)
- In 1% run, transformation in western subpolar gyre (WSPG) stops but in GIN seas moves north
- HadGEM3 MR has greater transformation in WSPG so is affected more when it stops than LR
- WSPG transformation stops when reduced northward ocean heat transport reduces ocean-atmosphere temperature gradient

Why does MR model have greater density transformation in WSPG?
- MR model is warmer, more saline and denser in WSPG than LR model. It has a stronger subpolar gyre and more westerly North Atlantic Current
- Leads to warmer, more saline water reaching the WSPG and preconditioning density transformation

Conclusions and future work
- In HadGEM3, model resolution affects AMOC weakening because it influences the mean state which affects the AMOC weakening
- Although the medium resolution model has improved some (but not all) biases, it is unclear which biases control the AMOC response.
- Extending this work to the HighResMIP-PRIMAVERA ensemble shows that models with higher resolution generally have stronger AMOCS and greater weakening in climate change scenarios (with caveat that most of the ensemble uses NEMO ocean model)
- In future we need to try and understand the underlying drivers for the changes in the AMOC mean state. This includes exploring the role of model numerics and overflow representation