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Motivation

• Several global studies have shown that the interannual variability of the wave climate and the
occurrence of extreme wave events are associated to large-scale climate oscillations, as the Southern
Annular Mode (SAM) and El Niño Southern Oscillation (ENSO), among others (e.g. Izaguirre et al., 2011,
Stopa et al., 2014, Kumar et al., 2016).

• Few studies have assessed regional wave climate in the Southern Hemisphere (e.g. Hemer et al., 2010)
and the Southeast Pacific remains poorly studied.

• Recently, the first Chilean Wave Atlas database was generated and validated (Beyá et al., 2017,
https://oleaje.uv.cl/), and the wave climatology of the Southeast Pacific was described (Aguirre et al.,
2017). Nevertheless, the Southeast Pacific coast still lacks a detailed description of the interannual
variability of wind waves.

• Here, we analyze the interannual variability of waves at the Southeast Pacific related to ENSO and
SAM, using a model hindcast.

https://oleaje.uv.cl/


Datasets

MODEL DATA

• A 38-yr hindcast was carried out for
the period between 1979 and 2016 for
the Pacific Ocean using the
Wavewatch III v4.18

• To force the model, we used sea ice
concentration and wind fields from the
ECMWF atmospheric reanalysis ERA-
Interim (Dee et al., 2011).

• Maps of wave parameters and
spectral data along the coast of the
Southeast Pacific were saved each 2º
of latitude.

CICLONE TRACK

• A cyclone tracking software developed
at The University of Melbourne was used
(Murray and Simmonds 1991; Simmonds
et al., 1999).

• Cyclones were identified using the sea
level pressure data of the ERA-Interim
dataset with spatial and temporal
resolution of 2.5° and 6 hours,
respectively.

• Sea level pressure, trajectory, duration
and density of extratropical cyclones
were obtained.
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ENSO‐related interannual variability of waves
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Correlation map of monthly mean SWH 

with the Southern Oscillation Index (SOI). 

Only significant correlations (at 95% 

confidence level) are showed.
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Wave Energy anomalies
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Montecarlo test (90%)

El Niño 82-83/97-98

El Niño 91-92/15-16

La Niña 88-89/07-08

m2/Hz*Deg

Energy anomalies from NW

Hovmoller diagram of the wave energy with NW 

direction during austral summer of ENSO selected 

events
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Cyclone Tracks
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SAM‐related interannual variability of waves

Wave Power relative change

Correlation SWH-SAM Correlation Mean period-SAM

Correlation map of monthly mean SWH 

with the Southern Annular Mode (SAM). 

Only significant correlations (at 95% 

confidence level) are showed.

Correlation map of monthly mean period

with the Southern Annular Mode (SAM). 

Only significant correlations (at 95% 

confidence level) are showed.

Wave power (WP) relative change calculated 
using the upper and lower quintiles of the SAM.
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Wave Energy anomalies

Upper quintile of the SAM 
(positive phase) 

Lower quintile of the SAM
(negative phase)

Wave energy anomalies off Valparaíso (33°S)

Composites of 

the wave energy 

calculated using 

the upper and 

lower quintiles of 

the SAM index.



SAM-driven SWH trends

Simple linear regression framework to estimate 

SWH changes congruent with the SAM

The SAM-driven SWH trend is estimated as 

SWH-SAM =  × SAM

 SAM: linear trend of the SAM index

 : regression slope computed between the time 

series of the SAM index and simulated SWH

Time series of the SAM index (we use the index of Marshall
et al. [2003], https://legacy.bas.ac.uk/met/gjma/sam.html

Over the SE Pacific, SAM-congruent 

SWH trend explains less than 50% of 

the simulated SWH trend.

.

SAM-driven SWH trend (SWH-SAM)

SWH trend 
[(SWH-SAM)/SWH trend]*100

%m/decade

m/decade

Black dots indicate values that are statistically significant 
according to the Mann-Kendall test. 

https://legacy.bas.ac.uk/met/gjma/sam.html


Conclusions

• Although no significant relationship is found between SWH and ENSO at the Southeast Pacific, the
wave energy coming from the North Pacific is significantly higher during the austral summer of the
extreme ENSO events occurred during 82/83 and 97/98.

• The SWH and mean period exhibit a relationship with the SAM at the Southeast Pacific, which strongly
impact the wave power, particularly at the southern tip of Chile.

• Directional spectra show an increase (decrease) of wave energy coming from SW during the positive
(negative) phase of the SAM. But, spectra also indicate increased (decreased) energy coming from
W-NW during the negative (positive) phase of the SAM.

• The simulated SWH shows a positive trend in the Southeast Pacific, which can be only partially
attributed to the observed trend in the SAM index. While the SAM-congruent SWH trend can explain
more than 50% of the simulated SWH trend in the Southern Ocean, over the Southeast Pacific, SAM-
congruent SWH trend explains less than 15% of the simulated SWH trend.
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