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Introduction with _ A
‘LiBalance Model o=~ U, 1o
e It gives a simple .relatlorTshlp of vellocr[y fle!d with ma§s field i.e ollensr[y. N n this expression, A is a free parameter, J is the rotation matrix and
e This model supplies a simple solution solving dynamical part of it because it filters
out inertia gravity waves. U, = u,+ Alug). (11)
e It is obtained as an expansion of the Lagrangian and transformation for the system
which has the balance in the leading order in ¢ = Ro. We note that U, takes the same form as U, with u replaced by u,
e It keeps the regularity of potential vorticity inversion. \
o e . . . . . A ) N
e The velocity field is determined by up to a constant of integration. It is separated as Ly = /DVU g + 5 |u]” — 3 |tg|” d, (12)
u=u-+u. <
e 1, causes degeneracy on L1 and fixed via transformation vector. where v = A + 1/(20.).
e u IS the mean velocity and found by the evolution of potential vorticity.
Results
e To obtain the balance model using the full Coriolis force
e To show the non-hydrostatic effect on the 3D model L1 Model and Potential vorticity
QAxu+pk+e@p+(Vxp) xu—VpVT.-B)=-V¢. (13)
AXxis of Rotation with incompressibility property
V-u=0, (14)
F
@ where p = (u + viy,0), b = v — 5u, and potential & = —7r — 3|u|* with the pressure
\ R The unit vector in the direction of the w. B is the vertical anti-derivative of b. The evolution equation for potential vorticity
X axis of rotation is D+ Ve =C-Viis—Vp-VIVL:-B— v (0.V0 - Vus — AO Oyus + u- VAO), (15)
Q 0
\ Q= | cosd/sino (1) where ¢ = (0,u*, V+ - u). The balance relation for U
1 . . _
\ LU =FU +GU,0), (16)
3’ lz where L is the elliptic operator, F' is the linear operator. L is elliptic as long as the
x fluid is stably stratified and Vp is not too large.
Figure 1: local f plane model positioned at latitude ¢, [2].
_ _ _ The potential vorticity is
Projectors along the rotation axis
—evAO — (14+ew) V(Q-V)O
0 0 0 1 0 0 q=c L 2 , (17)
A+ €0 —evd, VO 0,(2- V)6
Q:Sin2gbﬂﬂT: 0 cos?d cospsing| and P=1—-Q= [0 sin? ¢ —cos¢ sing | (2) (§2+e0:u7) — evd, 2 )
0 cosg sing  sin”¢ 0 —cosgsing  cos”¢ which has the same ellipticity conditions with balance relation (16).
The family of characteristics is parameterized by x. We can read as
x(x)=Az+b, (3)
where General Solution
10 0
A=101%Q, and b= HQ (4)
00 1
Uu
Thermal Wind Relation N\ \
. . L 2 . . . =
The fluid domain D = R* x [—H, 0]. The thermal wind relation as = Vi1 v % iy leelEinoe relkion us — Oy 0, —V - U
Q- Vi, =-Vip, (5) / \ /
where p Is the density and the geostrophic velocity at any point along the characteristics is
0 V5. .a=Ay 0.ug = —A¢
Z
ﬂgoxz—/ iVJ‘IOOX,—/ VJ‘poX,:VJ"@OX. (6) \\
g H Y,
Op+u-Vp=0
L1 model for mid-latitude
| ] | | e The numerical solution is expected.
Euler-Poincare theorem for continua: « and p satisfy e Validity of variational principle for anisotrophic scaling for the equatorial long wave
ty scaling is under progress.
5/ (. p)dt = 0. 7)
4]
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