Soil Biogeochemical Response to Drought Conditions in the Biosphere 2 Rainforest

Joanne H. Shorter*, Joseph R. Roscioli*, Laura K. Meredith^, Juliana Gil-Loaiza^

*Aerodyne Research, Inc. MA, USA
^University of Arizona, AZ, USA
The Problem

• Much biogeochemical knowledge is gained from understanding interstitial trace gases in soil
 • N_2O, NO, NH_2OH, NH_3... for N-cycling
 • CO_2, CH_4, HCHO, CH_3OH, CO... for C-cycling
 • Isoprene, monoterpenes, sesquiterpenes, acetone... for metabolites, communications, warfare

• Above-ground flux measurement are an excellent tool for understanding the interface between subsurface and atmosphere

• For understanding subsurface processes – measure right at the source
 • Subsurface probes that leverage atmospheric tools in the subsurface provide deep insights nutrient cycling and other bioprocesses
Campaign Aims

• To fully track, from molecules to the ecosystem, mechanisms driving the fate of carbon and water in forest systems under drought

• Investigate the mechanisms that drive plant-soil-microbe relationships

Main Question: What is the impact of drought and rewetting on a Tropical Rainforest?
Aerodyne/University of Arizona Goals

• Deployment of novel soil probes for semi-continuous, real-time measurement of subsurface dynamics

• Address the question: What is the Soil Biogeochemical Response to Drought and Rewetting in Tropical Rainforest? Focus on the impact on nitrogen cycle dynamics of drought and rewetting
 2-month drought followed by rewetting

• Observation of Birch effect in field measurement
Diffusive Gas Probes to Explore Subsurface Processes

- Buried hydrophobic porous probes
 - Examine subsurface dynamics by carrying subsurface gas to instruments
- Small, low profile
 - *Spatially* and *temporally*-resolved dynamics with high signal-to-noise

![Probe after several months in soil](image1)

New version of soil probe -- single ended design

Biosphere 2/WALD Campaign
September 2019 – February 2020

12 probes deployed in 2 experiments during Biosphere 2/WALD campaign

A. Rhizosphere vs. Outside Root Zone (control)
 3 probes in Palm Rhizosphere
 3 probes in Palm Control (non-rhizosphere)

B. Effect of Soil Depth on Soil Dynamics
 5 probes at different depths in soil pit
 20, 50, 100, 200 and 300 cm depth
 1 probe measuring ambient air
Measurement Details

Dual-laser Tunable Infrared Laser Direct Absorption Spectrometers (TILDAS)

- \(\text{N}_2\text{O} \) and isotopes
 - \(^{14}\text{N}^{14}\text{N}^{16}\text{O} \) (446)
 - \(^{14}\text{N}^{15}\text{N}^{16}\text{O} \) (456, “alpha”)
 - \(^{15}\text{N}^{14}\text{N}^{16}\text{O} \) (546, “beta”)
 - \(^{14}\text{N}^{14}\text{N}^{18}\text{O} \) (448)
- \(\text{CH}_4, \text{^{13}CH}_4, \text{CO}_2 \)

Real time monitoring of δ456 and δ546
to yield δ\(^{15}\text{N}\)-bulk and SP= (δ456 - δ546)

Timing: Measurement every 4 hours at each probe

Developed a plug flow measurement scheme to sample from each probe with minimal impact on surrounding soil.
Response of Palm Rhizosphere vs. Palm Control to Dry down and Rewetting

- **Rhizosphere** = avg of rhizo. probes
- **Control** = avg of control probes

Faded markers: Individual probes

- Drop in N_2O in soil during dry down with shift in Rhizosphere SP

- Birch effect after rain, and increase in rhizosphere N_2O
- δ15N-bulk: after rain, Control returns to pre-drought level while Rhizosphere remains higher
- 1 Rhizosphere probe had larger, sustained N_2O incr.
Response of Soil at Different Depths to Dry down and Rewetting

N₂O at all depths approached ambient N₂O with dry down.
SP and δ¹⁵N same at all depths

Deep rewet-- bottom probes respond slightly while others do not
SP and δ¹⁵N same at all depths
δ¹⁵N had small decrease with initial rain and then recovery
Soil Respiration Response to Drought and Rewet

- CO₂ decreased with dry down. It very slowly increased after rain.
- Respiration is slow to recover from system drought with the control region presenting a faster increase in CO₂.
- Possible negative rhizosphere priming in rhizosphere region
Summary

• Subsurface probes provided continuous measurement of soil dynamics for the entire drought and rewetting periods (5 months)

• **Rhizosphere vs. control**
 • Birch effect with the return of rain
 • $\delta^{15}\text{N}$ of control returned to pre-drought level, but rhizosphere remained elevated
 • Observed a slow recovery of soil respiration especially in rhizosphere area—possible negative rhizosphere priming

• **Soil depth response**
 • Little difference in N$_2$O isotopic signatures across depths
 • Timing of Birch effect response as function of depth was observed
 • Probes closer to surface with greatest increase in N$_2$O after rain
Acknowledgements

Project funded by U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Small Business Innovation Research Grant program under Award Number DE-SC0018459.

ERC VOCO #647008 WALD Project
• Philecology Foundation
• Susan and Daniel Warmack
• Biosphere 2 admin and staff
• Water Atmospheric and Life Dynamic project (WALD)