

The impact of denying sea ice information on the predictability of atmospheric processes over the Arctic and at mid-latitude regions

L. Ponsoni, D. Flocco, F. Massonnet, S. Delhaye, E. Hawkins and T. Fichefet

Motivation:

To assess the impact of denying sea ice information on the atmospheric conditions

- Perfect model framework (model as true reference)
- Long-term (>250 years) control-run with EC-Earth
- Restart the control run from moments characterized by different conditions of Arctic sea ice volume
- Restart the control run from original and climatological Arctic sea ice conditions

- Perfect model framework (model as true reference)
- Long-term (>250 years) control-run with EC-Earth
- Restart the control run from moments characterized by different conditions of Arctic sea ice volume
- Restart the control run from original and climatological Arctic sea ice conditions

- Perfect model framework (model as true reference)
- Long-term (>250 years) control-run with EC-Earth
- Restart the control run from moments characterized by different conditions of Arctic sea ice volume
- Restart the control run from original and climatological Arctic sea ice conditions

- Perfect model framework (model as true reference)
- Long-term (>250 years) control-run with EC-Earth
- Restart the control run from moments characterized by different conditions of Arctic sea ice volume
- Restart the control run from original and climatological Arctic sea ice conditions

- Restart from **maximum** and **minimum** Arctic sea ice volume conditions

- Restart from maximum and minimum Arctic sea ice volume

- Two sets of experiments for each restart data [total of 4]: Experiment Reference **[R]** = **Same ice conditions**

- Two sets of experiments for each restart data: Experiment Climatological **[C]** = **climatological ice conditions**

- 50 members each experiment
- 1 year simulations

- 50 members each experiment

- 1 year simulations

Small perturbation to the SST NEMO field #30

Diagnostics: Sea Ice Volume

Diagnostics: Sea Ice Volume

Diagnostics: 2 m air temperature [°C]

Diagnostics: geopotential height

Preliminary Results and Final Remarks:

- Underestimation (overestimation) of January sea ice leads to air temperature warming (cooling) mainly in autumn and winter, although the response is not mirrored
- From May to August it seems that internal variability is stronger than the air temperature response to the modified ice conditions
- Underestimation of sea ice drives a cooling in the Northern Asia associated to an increase in the geopotential height
- Main impacts are constrained to the Arctic
- Maybe more members are needed to bring robustness to the statistical tests(?)
- Identical experiments are being developed by University of Reading with HadGEM