Extreme surface elevation and water velocity in irregular waves propagating over a shoal

Karsten Trulsen & Christopher Lawrence
with experimental data from Stian Jorde

Department of Mathematics
University of Oslo

4 May 2020
Experiment of Stian Jorde (2018): measure surface elevation and velocity field in irregular waves over a shoal

A single run: Surface elevation measured with ultrasound probes at four locations (red), velocity field measured with ADV at one location (blue):

Repeat several times to measure at several locations:
Similar experiments and simulations have been done by many researchers limiting to surface elevation. Simultaneous elevation and velocity measurements only reported by Jorde (2018).
Conclusions from previous work:

When waves come from deeper water onto a sufficiently shallow shoal there can be large excursions of kurtosis and skewness near the edge of the shoal some distance into the shoal.

Summarized in:

Experimental result of Stian Jorde:

Skewness of surface elevation (black *) and of velocity field (blue +) behave similarly:

![Graph showing skewness of surface elevation and velocity field over distance x.](image)
Experimental result of Stian Jorde:

Kurtosis of surface elevation (black *) and of velocity field (blue +) behave differently:

Are rogue elevation waves and rogue kinematics waves of a different kind?

Trulsen et al. | EGU, 4 May 2020
Higher order comoment analysis:

If rogue elevation waves and rogue kinematics waves are of a different kind, try to visualize how their comoments behave.

Coskewness ($n + m = 3$):

$$\gamma_{n,m} = \frac{E[(\eta - \bar{\eta})^n(\nu - \bar{\nu})^m]}{\sigma^n_\eta \sigma^m_\nu}$$

Cokurtosis ($n + m = 4$):

$$\kappa_{n,m} = \frac{E[(\eta - \bar{\eta})^n(\nu - \bar{\nu})^m]}{\sigma^n_\eta \sigma^m_\nu}$$
Sorry, some synchronization problems in our lab prevented us from computing comoments from measurements so far, we hope to present them soon, but in the mean time . . .
Numerical simulations of Christopher Lawrence allowed computing comoments.
Conclusions

Laboratory experiments and numerical simulations show that extreme surface elevation and extreme velocity field can be dramatically different as a wave field propagates through an inhomogeneous environment.

We anticipate that a wave train can possess rogue surface elevation waves and rogue velocity waves that are of a different kind.

This can have serious implications for a correct assessment of the threat posed by rogue waves.

Do we need different rogue wave criteria for surface elevation and kinematics?