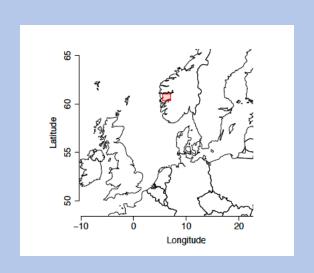
A new Bayesian hierarchical geostatistical model based on two spatial fields with case studies with short records of annual runoff in Norway

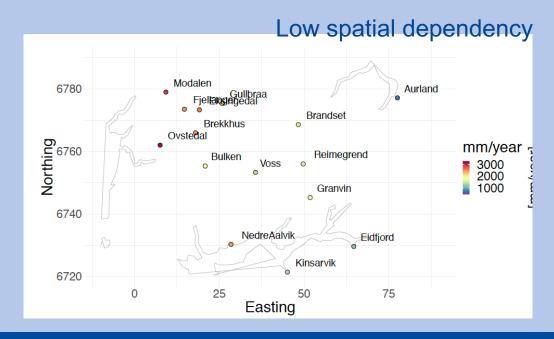
Ingelin Steinsland¹, Thea Roksvåg¹ & Kolbjørn Engeland²

- 1) NTNU (Norwegian University of Science and Technology),
- 2) NVE (Norwegian water resources and energy directorate)

Motivating example

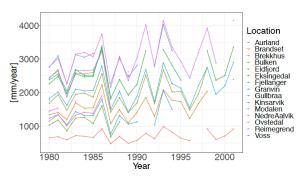
Annual precipitation in Western Norway



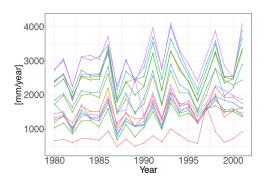


Data:

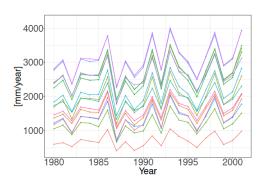
Low temporal dependency, but we find the same pattern each year



Traditional geostatistics:



Desired solution?



We have constructed a geostatistical method that is able to detect and capture such data patterns.

Model run-off location *u* year *j*

$$q_i(\mathbf{u}) = \beta_c + c(\mathbf{u}) + \beta_j + x_i(\mathbf{u}); \quad \mathbf{u} \in \mathbb{R}^2; \quad j = 1, ..r.$$

Model *r* years simultaneously.

Climate (long-term averages):

 β_c : Intercept.

 $c(\mathbf{u})$: Spatial effect. $GRF(\rho_c, \sigma_c)$.

Annual discrepancy from climate:

 β_i : Intercept. Year j

 $x_i(\mathbf{u})$: Spatial effect. GRF (ρ_x, σ_x) .

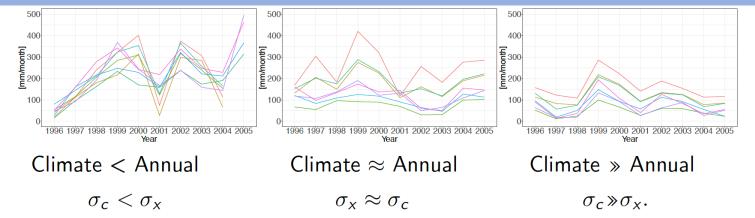
GRF: Gaussian random field. $\mathcal{N}(0, \mathbf{\Sigma}(\rho, \sigma^2))$.

\(\Sigma: Covariance matrix.

 ρ : Spatial range.

 σ^2 : Spatial marginal variance.

Simulated examples from model



$$q_j(\mathbf{u}) = \beta_c + c(\mathbf{u}) + \beta_j + x_j(\mathbf{u}); \qquad \mathbf{u} \in \mathbb{R}^2; \qquad j = 1, ..r.$$

Model r years simultaneously.

Climate (long-term averages):

 β_c : Intercept.

 $c(\mathbf{u})$: Spatial effect. GRF (ρ_c, σ_c) . $x_i(\mathbf{u})$: Spatial effect. GRF (ρ_x, σ_x) .

Annual discrepancy from climate:

 β_i : Intercept.

For catchment A

Areal model:

$$\overline{Q_j(A)} = \frac{1}{|A|} \int_{\boldsymbol{u} \in A} q_j(\boldsymbol{u}) d\boldsymbol{u}.$$

Mass-conservation.

Centroid model:

$$Q_j(\mathcal{A}) = q_j(\boldsymbol{u}_{\mathcal{A}})$$

 $\boldsymbol{u}_{\mathcal{A}}$ is the catchment centroid.

No mass conservation, but quicker.

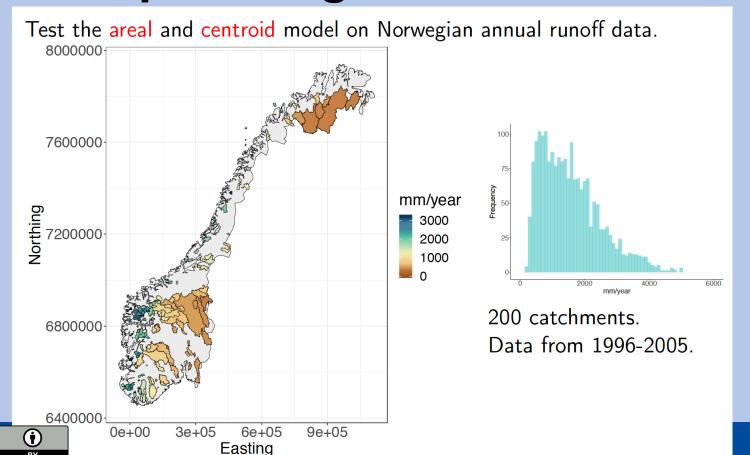
With the model framework we can:

- Model overlapping catchments consistently
- Combining areal (runoff) and point (precipitation) observations.
- Utilize short records
- Use informative priors in a Bayesian setting
- Fast inference using INLA (Integrated nested Laplace Approximations)

Papers available:

- Thea Roksvåg, Ingelin Steinsland, Kolbjørn Engeland, A geostatistical two field model that combines point observations and nested areal observations, and quantifies long-term spatial variability -- A case study of annual runoff predictions in the Voss area Under revision, available at arXiv:1904.02519
- Roksvåg, T., Steinsland, I., and Engeland, K.: A geostatistical framework for estimating flow indices by exploiting short records and long-term spatial averages – Application to annual and monthly runoff, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-415, in review, 2019.

Example using short records



Divide the catchments into 20 groups/folds.

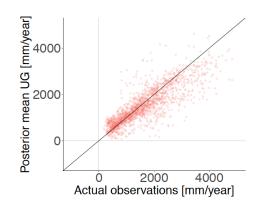
For each cross-validation fold we:

- Remove data.
- Predict the missing values for individual years $\in \{1996, 2005\}$.
- Evaluate the predictive performance of the areal and centroid model, compare to Top-Kriging.

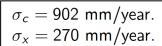
Ungauged catchments (UG): Treat the target catchments as ungauged.

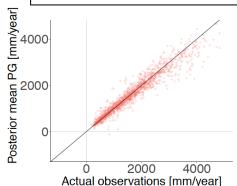
Partially gauged catchments (PG): Include one random observation from the target catchment from one of the years $\in \{1996, 2005\}$. Assess the value of short records.

Results: Partially gauged catchments (PG)



UG for the areal model. RMSE=363 mm/year.

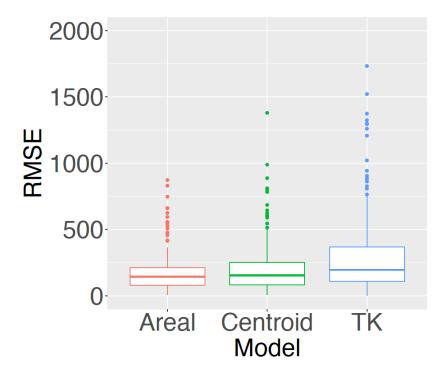




PG for the areal model. RMSE= 184 mm/year.

The average reduction in RMSE is around 50 % when adding a short-record of length 1.

$$\sigma_c^2/(\sigma_c^2 + \sigma_x^2) = 90\%$$
.
The climatic effects are dominating.



The areal and centroid models outperform Top-Kriging for partially gauged catchments.

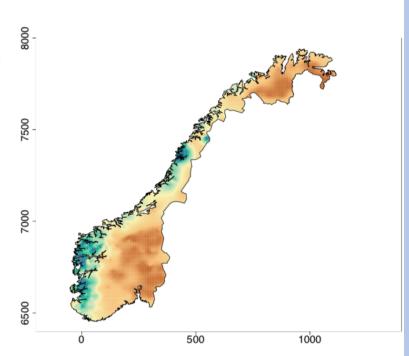
Top-Kriging treats each year individually, while we model 10 years simultaneously.

Conclusions short records

The spatial variability is stable in Norway over years ($\sigma_c >> \sigma_x$).

 \rightarrow There is a lot of information stored in the short runoff records in Norway.

 \rightarrow Comparing UG and PG, the reduction in RMSE was on average 50% when adding a short-record of length 1.



Thank you!

Want to read more?

- Thea Roksvåg, Ingelin Steinsland, Kolbjørn Engeland, A geostatistical two field model that combines point observations and nested areal observations, and quantifies long-term spatial variability -- A case study of annual runoff predictions in the Voss area Under revision, available at arXiv:1904.02519
- Roksvåg, T., Steinsland, I., and Engeland, K.: *A geostatistical framework for estimating flow indices by exploiting short records and long-term spatial averages Application to annual and monthly runoff*, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-415, in review, 2019.

