Spectral fabric model coupling grain orientation, grain volume, and lattice strain-energy distribution functions

Nicholas M. Rathmann 1 <rathmann@nbi.ku.dk>, Sérgio H. Faria 2, Aslak Grindsted 1, Christine S. Hvidberg 1, David A. Lilien 1, Dorthe Dahl-Jensen 1
1 Niels Bohr Institute, University of Copenhagen, Denmark, 2 BC2, the Basque Centre for Climate Change, Spain

Grain number distribution (ODF)
\[\dot{n} = \dot{n}_R + \dot{n}_G + \dot{n}_M + \dot{n}_S \]

Volume distribution
\[\dot{v} = \dot{v}_R + \dot{v}_G + \dot{v}_M + \dot{v}_S + \dot{w} \]

Strain-energy distribution
\[\dot{w} = \dot{w}_R + \dot{w}_G + \dot{w}_M + \dot{w}_S + \dot{w}_C \]

Distributions expanded in term of spherical harmonics, e.g.:
\[n = |\psi|^2 \]
\[\psi(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \psi_l^m Y_l^m(\theta, \phi) \]

Conforms with the parabolic growth law:
\[\frac{\langle d \rangle}{\langle d_e \rangle} = \gamma \Lambda \left(\frac{1}{\langle d \rangle^2} - \frac{1}{\langle d_e \rangle \langle d \rangle} \right) \]

A volume-consuming process driven by a power-law dependency on the strain-energy density

Driven by strain-energy decay and assumes classical nucleation theory

All processes are required to conserve be volume conserving

Ensemble total number of grains (N), volume (V), and stored strain-energy (W):
\[N = \int_{S^2} n \, d\Omega, \quad V = \int_{S^2} v \, d\Omega, \quad W = \int_{S^2} w \, d\Omega \]

Ensemble-average grain diameter:
\[\langle d \rangle = \frac{1}{4\pi} \int_{S^2} \left(\frac{6 \, v}{\pi \, n} \right)^{1/3} \, d\Omega \]

Model assumes spherical grains
Tentative model simulations of GRIP and Dome C ice-cores

Eigenvalues (a_i) may straightforward be calculated from ODF moments:

$$\langle \hat{p}^k \rangle = \frac{1}{N} \int_{S^2} \hat{p}^k n \, d\Omega$$