What is the “ambient” mantle?

The Earth’s lower mantle can be broadly divided into three domains based on amplitude and polarity of seismic wavespeed perturbations (i.e. $\%\delta ln V_s$, $\%\delta ln V_p$). These also correspond to different structural, thermo-chemical, and/or rheological regions:

1. **HIGH** ($+\delta ln V$)
 - Seismically “fast”
 - Denser, colder
 - Match palaeo-subduction
 - **Subducted oceanic lithosphere**

2. **LOW** ($-\delta ln V$)
 - Seismically “slow”
 - Less dense, warmer
 - **Mantle plumes and LLSVPs**

3. **AVERAGE** ($\pm\delta ln V$) (or AMBIENT)
 - Seismically low amplitude
 - i.e. close to the reference model (e.g. PREM, ak-135)

P-wave model (HMSL-P06; Houser et al., 2008) at 1000 km depth showing all anomalous wavespeed perturbations, and extracted fast and slow and ambient.

Centre for Earth Evolution and Dynamics (CEED)
University of Oslo, Norway
Earth-Life Science Institute (ELSI)
Tokyo Institute of Technology, Japan

Feedback/collaboration welcome:
grace.shephard@geo.uio.no

@ShepGracie
Are they primordial features?

We propose that these ambient domains (average velocity) may contain early refractory and bridgmanitic mantle with elevated Si/(Mg+Fe) and Mg/Fe ratios. This may support the earlier proposed BEAMS model (bridgmanite-enriched ancient mantle structures; Ballmer et al., 2017).

These ambient domains could have formed by early basal magma ocean (BMO) fractionation during a period of core-BMO exchange of SiO2 (from core to BMO) and FeO (from BMO to core). Despite its high viscosity, bridgmanitic material (possibly representing a primitive and refractory PREMA-type (prevalent mantle) reservoir with primordial-like He and Ne components), might be entrained in vigorous, deep-seated plumes. In the upper mantle, such material will transform to less refractory pyroxenitic rocks, which can melt more easily.
What does the ambient look like for a given tomography model?

Below is a comparison of the P-wave tomography model of HMSL-06 (Houser et al., 2008) at different lower mantle depths for the original model (top panels) and the extracted ambient mantle within 0.5± standard deviations (sigma) from the average i.e. the ambient portion (below panels).
Also compared in bottom right for alternative sigma thresholds (±0.5σ, ±0.75σ and ±1σ)
Which tomography model to choose?

There exist numerous seismic tomography models; each image the Earth in slightly different ways. To quickly survey where different models agree, and therefore provide an insight into what are likely the most robust features, a “vote map” methodology can be used (e.g. Lekic et al., 2016; Shephard et al., 2017). This method does not add anything new to the mantle structure - it just culls the features that differ between the models!

Below is adapted from Shephard et al. (2017); the slabs are identified from the faster anomalies (e.g. >+1σ). This process can also be applied to slow or a selected range, such as the ambient domains.

1. Original tomography model
2. Extract fast values above a threshold (e.g. 1 sigma)
3. Contour for given value (e.g. > 1σ) and convert to binary grid
4. Repeat for other tomog. models at same depth
5. Sum at each pixel for vote map

What do ‘ambient’ vote maps look like?

Here are vote maps contoured for ±0.5 sigma for 4 P-wave models. A vote of 4 (darkest purple) means all models agree that there is an anomaly at this location of between ±0.5 sigma. Whereas 0 or low votes (greens) mean there are fast or slow anomalies that are outside this range i.e. slabs, plumes, or LLSVPs.

The 4 P-wave models included here: DETOX; HML-P06; GAP-P4; MITP-2011. See reference list.
Any depth dependent trends?

Below is a vertical section through the lower mantle around the equator as viewed from the South Pole. The purples are the “most” ambient domains according to the four models used here.

Can we compare these to geodynamic models?

The high viscosity of bridgmanitic material will promote its convective aggregation, not be readily-mixed, and stabilise the large-scale, degree-2 convection pattern. The primordial features may also be neutrally buoyant in the mid lower-mantle. Models testing scenarios with high viscosity domains (thus resisting entrainment), and for long timescales including since BMO conditions, are under development (see also Gülcher et al., 2020).

Below are schematic StagYY models through an equatorial slice showing temperature (regional and global residual) and dynamic flow fields (e.g. Crameri, 2018).

References

