Intra-oceanic subduction initiation recorded by the metamorphic sole of the New Caledonia ophiolite – preliminary structural and age constraints

Bénédicte Cénki-Tok^{1,2}, Derya Güer¹*, Vasileios Chatzaras²*, Julien Collot³, Fernando Corfu⁵, Pierre Maurizot⁴

*presenting authors

BACKGROUND
The New Caledonia ophiolite formed in a supra-subduction zone setting in the vicinity of an active spreading centre. A metamorphic sole, which represents the ancient subduction interface, is locally preserved beneath the ophiolite. Unravelling its tectono-metamorphic record is essential in order to determine the timing of subduction initiation and the tectonic processes operating at the plate interface during the early stages of subduction.

WHY STUDY METAMORPHIC SOLES?
Metamorphic soles are thin (<500 m), fault bounded sheets of highly deformed meta-volcanic and meta-sedimentary rocks that structurally underlie many supra-subduction zone ophiolites. They are interpreted to be derived from the top of an oceanic slab that accreted to the base of the still hot overriding plate in the nascent stages of intra-oceanic subduction.

Date timing of subduction initiation depending on the presence of the earliest metamorphic minerals that form in soles (e.g., garnet).

Constrain the kinematics and deformation regime at the plate interface during subduction initiation.

Understand amphibole deformation and how the mechanical behavior of amphibole-bearing rocks may affect plate interface rheology during the incipient stages of subduction.

The spatiotemporal relationships between prograde mineral growth in the sole and crystallization of forearc crust can be used to discern between spontaneous vs. inducted subduction initiation (Guilmette et al., 2018).

NEW CALEDONIA
Exposures of the metamorphic sole (red stars) are scattered across the island, over an area of 160 km * 50 km. We have sampled and studied amphibole-bearing rocks of the metamorphic sole that crop out in three newly found and three previously known localities.

THE METAMORPHIC SOLE
The metamorphic sole consists of amphibolites, which occur as along-strike discontinuous and thin (few meters to few tens meters) local outcrops.

OUTLOOK
• Petrology and thermodynamic modelling
• Dating of grt-bearing samples

RESULTS
U-Pb zircon ID-TIMS geochronology
Zircons from the metamorphic sole yield a U-Pb age of 56.7±0.3 Ma. We interpret this age as crystallization of melt segregations within the metamorphic sole. Zircons from two other localities (Poum and Pinjien) yield overlapping ages. The obtained ages date post-peak conditions rather than burial, thereby underestimating the age of sole formation by a yet-unknown amount of time.

Zircons from a dyke intruding the forearc region of the ancient subduction zone yield a U-Pb age of 54.4±0.7 Ma. We interpret this age to represent subduction-related magmatism in the forearc as the subduction zone matured.

These preliminary results may indicate that there is a time lag between sole formation and forearc magmatism, but more age constraints are needed.

Microstructural data show well-developed shape preferred orientations, and symmetric crystallographic preferred orientations for amphibole, plagioclase and clinopyroxene.