Field Survey of the 2018 Anak Krakatau Tsunami on the Islands in the Sunda Strait

Hermann M. Fritz¹, Tubagus Solihuddin², Costas E. Synolakis³,⁴, Gegar S. Prasetya⁵, Jose C. Borrero⁶, Vassilis Skanavis³, Semeidi Husrin², Widjo Kongko⁷, Dinar C. Istiyanto⁷, August Daulat², Dini Purbani², Hadiwijaya L. Salim², Rahman Hidayat², Velly Asvaliantina², Maria Usman⁵, Ardito Kodijat⁹

¹ School of Civil and Environmental Eng., Georgia Institute of Technology, Atlanta, GA 30332, USA
² Marine Research Centre, Ministry of Marine Affairs and Fisheries, Jakarta 14430, Indonesia
³ Dept. of Civil and Env. Eng., University of Southern California, Los Angeles, CA 90089, USA
⁴ Dep. of Environmental Engineering, Technical University of Crete, Chanea 73100, Greece
⁵ Indonesian Tsunami Scientific Community, Jakarta 12950, Indonesia
⁶ eCoast Ltd., 47 Cliff St., Raglan 3225, New Zealand
⁷ Agency for the Assessment and Application of Technology (BPPT), Yogyakarta 55284, Indonesia
⁸ Coordinating Ministry for Maritime Affairs – Jakarta 10340, Indonesia
⁹ IOC-UNESCO, Indian Ocean Tsunami Information Center (IOTIC), Jakarta 12110, Indonesia
Volcanic Tsunamis: Krakatau 1883 and 2018

Krakatau 1883 remnant Rakata

Anak Krakatau Before (Photo: September 2018)

Fritz et al., 2020
Anak Krakatau Before
(Photos: September 2018)
Meeting at Marine Research Center (MRC):
Ministry of Marine Affairs and Fisheries (MoMAF) and
Coordinating Ministry of Maritime Affairs (CMoMA)
TIDE STATION POINTS

Slide:
Widjo Kongko

<table>
<thead>
<tr>
<th>#</th>
<th>Lon. (deg)</th>
<th>Lat. (deg.)</th>
<th>Sta. Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105.8410</td>
<td>-6.1893</td>
<td>Serang</td>
</tr>
<tr>
<td>2</td>
<td>105.9530</td>
<td>-6.0176</td>
<td>Ciwandan</td>
</tr>
<tr>
<td>3</td>
<td>104.2130</td>
<td>-5.5204</td>
<td>Bangkunat</td>
</tr>
<tr>
<td>4</td>
<td>104.6190</td>
<td>-5.5003</td>
<td>Kota Agung</td>
</tr>
<tr>
<td>5</td>
<td>105.3190</td>
<td>-5.4713</td>
<td>Panjang</td>
</tr>
</tbody>
</table>
Slide:
Widjo Kongko

MARIGRAM: Ciwandan

Fritz et al., 2020
Sunda Strait Islands Tsunami Field Survey

[Map of Sunda Strait Islands with locations marked]

[Graph showing tsunami height and runup height]
Rakata Island
Maximum 85 m runup

Fritz et al., 2020
Rakata Island
Rakata Island
Rakata Island

Fritz et al., 2020
Rakata Island

Fritz et al., 2020
Rakata Island

Fritz et al., 2020
Rakata Island
Rakata Island

Fritz et al., 2020
Krakatau Volcanic Complex

Fritz et al., 2020
Panjang Island

Fritz et al., 2020
Panjang Island

Fritz et al., 2020
Panjang Island

Fritz et al., 2020
Anak Krakatau Volcano

Fritz et al., 2020
Anak Krakatau Volcano

Fritz et al., 2020
Sertung Island

Fritz et al., 2020
Sebesi

Nearest Inhabited Island

Fritz et al., 2020
Sebesi Island
Sebesi Island

Fritz et al., 2020
Sebesi Island

Fritz et al., 2020
Sebesi Island

Fritz et al., 2020
Waymuli, Sumatra

Fritz et al., 2020
Waymuli, Sumatra

Fritz et al., 2020
Panaitan Island, Ujung Kulon National Park
Panaitan Island, Ujung Kulon National Park
Panaitan Island, Ujung Kulon National Park

Fritz et al., 2020
Eyewitness Interview

Fritz et al., 2020
Sunda Strait Islands Tsunami Field Survey

Fritz et al., 2020
2018 Sunda Strait tsunami CONCLUSIONS

- ITST collected 87 tsunami heights February 4-9, 2019
- Maximum 85 m runup on Rakata and an 83 m runup on Sertung.
- Flow depth reached more than 11 m above ground on Sertung.
- On Sebesi Island located 15 km northeast of the source tsunami runup heights remained below 10 m.
- Tsunami heights exceeding 10 m were observed in the Ujung Kulon National Park located 50 km southwest.
- The runup distributions on the islands encircling Anak Krakatau highlight the directivity of the collapse towards the southwest.
- Inundation and damage were mostly limited to within 400 m of the shoreline given the relatively short wavelengths of volcanic tsunamis.
- The team interviewed numerous eyewitnesses based on established protocol and educated residents about tsunami hazards.
- Community-based education and awareness programs are essential to save lives in locales at risk from locally generated tsunamis.
- Regrowth of Anak Krakatau will determine the future tsunami hazard.
- PAGEOPH Borrero et al., 2020 tentatively accepted for publication
Acknowledgments

This work is supported by

• National Science Foundation NSF RAPID award CMMI-1906162

• Any opinions, findings, and conclusions or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

Fritz et al., 2020
Terima Kasih - Questions

Fritz et al., 2020