MAGNETOTAIL FLOWS NEAR LUNAR ORBIT AND THEIR RELATION TO SUBSTORMS

Stefan Kiehas (1), Andrei Runov (2), Vassilis Angelopoulos (2), Daniil Korovinskiy (1)

(1) IWF, Austrian Academy of Sciences, Graz, Austria

(2) IGPP, EPSS, UCLA, Los Angeles, USA
MAGNETOTAIL FLOWS

(a) Mid-tail origin (NENL)

Tailward (TW) flows @ ARTEMIS:
Source X_GSM > - 60 RE

Earthward (EW) flows @ ARTEMIS:
Source X_GSM < - 60 RE

Source of EW flows:
- DNL?
- retreating NENL?
- patchy reconnection?

(c) Distant-tail origin (tailward retreated NENL)

after Nishimura et al., 2013
ARTEMIS ORBITS 2011-2015

2011 Orbit in AGSM

2012 Orbit in AGSM

2013 Orbit in AGSM

2014 Orbit in AGSM

2015 Orbit in AGSM

THB (P1)
THC (P2)
Plasma sheet selection:
$T > 500 \text{ eV}$
$N < 0.5 \text{ cm}^{-3}$
43% (v_x > 400 km/s) to 56% (v_x > 100 km/s) of the flows are directed EW.

29% (v_perp_x > 400 km/s) to 44% (v_perp_x > 100 km/s) of the convective flows are directed EW.

The percentage of EW flows decreases with increasing flow speed.

Kiehas et al., JGR, 2018
Outflow speed ~ v_A in inflow region

v_A decreases with downtail distance

=> high speed flows are more likely to origin from near Earth region (= TW flows @ ARTEMIS)

=> for high speed flows the percentage of EW flows is smaller

Slavin et al., 1985
BZ ASSOCIATION WITH FLOWS

- **EW flows**: primarily associated with southward Bz
- **TW flows**: primarily associated with northward Bz, but less clear
 => plasmoids

![Diagram showing EW and TW flows with percentages]
No clear asymmetry for EW flows
60% of TW flows in dusk sector
Since TW flows originate from near-Earth region => indication that asymmetry is more pronounced closer to Earth
TW flows: dusk asymmetry similar for all AL thresholds

EW flows:
- low AL threshold: fairly symmetric
- high AL threshold: EW flows become strongly asymmetric toward dusk

=> RX EW of ARTEMIS asymmetric. Distant tail RX (slower EW flows during low geomagnetic activity) symmetric. Higher geomagnetic activity (AL>400 nT) near-Earth neutral line retreat downtail - passing by ARTEMIS.
Find flow events when s/c was inside PS before detection of flow

Criterion:
- s/c inside PS for at least 30 sec before flow detection
- Flows need to exceed 200 km/s

Result:
39 EW events
55 TW events
Clear correlation of TW flow onset with AL.
No correlation of EW flow onset with AL.
• 43% ($v_x > 400 \text{ km/s}$) to 56% ($v_x > 100 \text{ km/s}$) of the flows are directed EW
• 29% ($v_{\perp_x} > 400 \text{ km/s}$) to 44% ($v_{\perp_x} > 100 \text{ km/s}$) of the convective flows are directed EW
• The percentage of EW flows decreases with increasing flow speed

• EW flows: primarily associated with northward Bz
• TW flows: primarily associated with southward Bz, but less clear => plasmoids

• No clear asymmetry for EW flows
• 60% of TW flows in dusk sector
• => Dawn-dusk asymmetry stronger near Earth. In line with Hall E as asymmetry source (cf. San Lu et al.)

Asymmetry and AL: TW flows: dusk asymmetry similar for all AL thresholds. EW flows: for high AL threshold EW flows become strongly asymmetric toward dusk.

Clear correlation of TW flow onset (flows from within ~ -60 RE) with AL. No correlation of EW flows (flows originating from beyond ~ -60 RE) with AL.