The role of soil characteristics on measured and modelled carbon dioxide (CO$_2$) fluxes for Arctic dwarf shrub tundra sites

- Differences in net ecosystem CO$_2$ exchange (NEE) at two Canadian Southern Arctic dwarf shrub tundra sites 1000 km apart can be explained by differences in ecosystem respiration (R_e) due to physiographic setting affecting soil characteristics rather than differences in climate.

- Combining land surface model CLASSIC and field measurements (eddy covariance and chambers) indicates that the Daring Lake dwarf shrub tundra site was an annual CO$_2$ source over 2004-2017.

Gesa Meyer1,2,3, Elyn R. Humphreys2, Joe R. Melton3, Peter Lafleur4, Philip Marsh5, Matteo Detto6, Manuel Helbig1,7, Julia Boike8,9, Carolina Voigt1, Oliver Sonnentag1

1Université de Montréal, 2Carleton University, 3Environment and Climate Change Canada, 4Trent University, 5Wilfrid Laurier University, 6Princeton University, 7McMaster University, 8Alfred Wegener Institute for Polar and Marine Research, 9Humboldt University
Background & Objectives

• Tundra ecosystems across the vast Arctic region vary greatly in climate, soils, and vegetation.
• The Arctic is warming more rapidly than other regions of the globe and the impact on CO$_2$ exchange between tundra and the atmosphere is uncertain.
• Studies suggest the CO$_2$ sink/source strength of the Arctic is changing (Belshe et al. 2013) but there are few studies with annual CO$_2$ flux observations to confirm these trends.

To better understand tundra CO$_2$ exchange, we compare eddy covariance fluxes (2013 – 2017) at two Southern Arctic shrub tundra sites 1000 km apart.
• Process-based models enable us to determine winter CO$_2$ efflux (Natali et al., 2019) and thus annual NEE, where year-round measurements are very difficult to obtain.

Highly uncertain due to few data points

Natali et al. 2019 Nature Climate Change

Belshe et al. 2013 Ecology Letters
Two Southern Arctic dwarf shrub tundra sites 1000 km apart

Trail Valley Creek (TVC)
68.7°N, 133.3°W, 85 m elevation
~ 50 km NNE of Inuvik
-8.2 °C avg. annual air temperature
~240 mm annual precipitation
7.5 °C avg. T_a
May-September
2013-2017

Daring Lake (DL1)
64.8°N, 111.5°W, 425 m elevation
~ 300 km NE of Yellowknife
-8.9 °C avg. annual air temperature
200-300 mm annual precipitation
8.2 °C avg. T_a
May-September
2013-2017
Differences in average (2013-2017) cumulative NEE may be largely due to greater ecosystem respiration (R_e) at DL1 with only small differences in gross primary productivity (GPP).

On average, ~38 g C m$^{-2}$ less growing season CO$_2$ uptake at DL1 than TVC despite very similar weather and vegetation characteristics (see Supplementary Materials).

Data was processed the same way for both sites.
Summary: Similar GPP at the sites, greater R_e at DL1, therefore greater net CO$_2$ uptake at TVC. Although the two sites have similar weather and vegetation characteristics, TVC has cooler soils and less thaw.

Hypothesis: Deeper porous surface organic layer (including moss layer) at TVC dries quickly and acts as a mulch limiting ground heat penetration in summer. Cooler soils = lower soil respiration at TVC and greater net CO$_2$ uptake in summer.

To estimate annual NEE we used the CLASSIC model …
Spin-up using GSWP3-ERA5 reanalysis meteorological data for 1901-1925; run using reanalysis data and transient CO$_2$ for 1901-2004 and using input variables observed at DL1 from 2004-2017

- 22 soil layers down to 20m depth,
- permeable depth of 5m,
- top 10 cm fibric organic layer,
- > 10 cm mineral soil consisting of 80% sand & 4.4% clay
Differences between the plant functional types (PFTs) impact the carbon as well as energy and water balances.

Results using the new shrub PFTs in CLASSIC are compared to grass and tree run outputs.
Shrub PFT improves CLASSIC representation of NEE at DL1 (over tree and grass simulations). DL1 is a CO$_2$ source over 2004-2017.

- Shrub, grass and tree results are the CLASSIC model results and the blended observations combine eddy-covariance (EC) (solid black line) and forced diffusion chamber (dashed black line) NEE measurements.
- Chamber measurements were only available for one winter (used for all years).
- Grass and tree runs are too productive and shifted in time.

Error bars show the standard error of the mean, no biases are included.

~182 - 306 g C m$^{-2}$ released from the DL1 site from 2004-2017.
Conclusions

1. Despite being located 1000 km apart, the two dwarf shrub tundra sites show similar growing season weather (see Supplementary Materials) and GPP. However, Trail Valley Creek showed a larger net growing season CO$_2$ uptake than Daring Lake.

2. Differences in R_e and NEE were linked to differences in soil characteristics such as organic matter content, soil texture and thermal properties affecting thaw depths.

3. Combination of measurements and land surface models are important to better estimate the C balance of high-latitude sites, where year-round measurements are especially difficult to obtain.

4. Both CLASSIC simulations and EC/chamber measurements indicate that Daring Lake was a net source of CO$_2$ over 2004-2017.

5. Shrub (266 g C m$^{-2}$), grass (203 g C m$^{-2}$) and tree (306 g C m$^{-2}$) model runs have different cumulative NEE over 2004-2017 showing the importance of representing tundra ecosystems with appropriate PFTs in global C models.
Supplementary Materials
Site Characteristics

Leaf area index (Avg ± SE)
Thaw depth (Avg ± SE)
Snowmelt date (DOY)
Soils

Both sites with continuous permafrost & similar vegetation species with different abundances: *Ledum decumbens, Empetrum nigrum, Loiseleuria procumbens, Betula glandulosa, Vaccinium uliginosum, Salix spp., Carex spp., Eriophorum vaginatum*

% Cover ± SE

Vascular plant composition (%) ± SE

Daring Lake (DL1)
- 0.52 ± 0.05 m² m⁻²
- 85 ± 3 cm
- 135-144
- shallow organic layer (8 ± 2 cm) overlying sand to loamy sand mineral soil

Trail Valley Creek (TVC)
- 0.66 ± 0.11 m² m⁻²
- 74 ± 5 cm
- 135-151
- deeper surface organic layer (18 ± 3 cm) overlying silty clay mineral soil

EC-system: 3D sonic anemometer (Gill R3-50), open-path infrared gas analyzer (IRGA) (LI-COR LI-7500) until 2015 and enclosed-path IRGA (LI-7200) since 2014
Daily mean climate variables at DL1 and TVC averaged over 2013 – 2017 including their standard deviation

Despite 1000 km separation, similar weather at the two sites
New shrub and sedge plant functional types (PFTs) in CLASSIC

<table>
<thead>
<tr>
<th>CLASS PFTs</th>
<th>CTEM PFTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needleleaf Tree</td>
<td></td>
</tr>
<tr>
<td>(NdlTr)</td>
<td>Evergreen</td>
</tr>
<tr>
<td></td>
<td>(NdlEvgTr)</td>
</tr>
<tr>
<td>Broadleaf Tree</td>
<td></td>
</tr>
<tr>
<td>(BdlTr)</td>
<td>Evergreen</td>
</tr>
<tr>
<td></td>
<td>(BdlEvgTr)</td>
</tr>
<tr>
<td>Crop (Crops)</td>
<td>C_3 (CropC3)</td>
</tr>
<tr>
<td>Grass (Grass)</td>
<td>C_3 (GrassC3)</td>
</tr>
<tr>
<td>Broadleaf Shrub</td>
<td></td>
</tr>
<tr>
<td>(BdlSh)</td>
<td>Evergreen</td>
</tr>
<tr>
<td></td>
<td>(BdlEvgSh)</td>
</tr>
</tbody>
</table>

Simulations – fractional coverage of the PFTs:

1) Shrub run: BdlEvgSh = 30%, BdlIDCoSh = 12%, Sedge = 18%
2) Grass run: C3 grass = 60%
3) Tree run: NdlEvgTr = 30%, BdlIDCoTr = 12%, C3 grass = 18%

40% bare ground
Modelled and observed daily soil temperatures at DL1 for the shrub run averaged over 2004-2017
Modelled and observed relative daily volumetric water content at DL1 for the shrub run averaged over 2004-2017
<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shrubs</td>
<td>Grass</td>
</tr>
<tr>
<td>Max. vegetation height (m)</td>
<td>0.22</td>
<td>0.35</td>
</tr>
<tr>
<td>Root depth (m)</td>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>Active layer depth (m)</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Max. LAI (m² m⁻²)</td>
<td>1.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Snow depth (m)</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Max. green leaf biomass (g C m⁻²)</td>
<td>123</td>
<td>74</td>
</tr>
<tr>
<td>Max. stem biomass (g C m⁻²)</td>
<td>176</td>
<td>0</td>
</tr>
<tr>
<td>Max. root biomass (g C m⁻²)</td>
<td>491</td>
<td>434</td>
</tr>
<tr>
<td>C soil (kg C m⁻²)</td>
<td>10.3</td>
<td>21.9</td>
</tr>
</tbody>
</table>
Despite overestimation in the spring, shrubs perform better than grasses and trees. The timing of GPP and thus NEE is shifted for grasses and peaks too high for both grasses and trees.