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Introduction

« Hikurangi margin marks the
subduction of the Pacific Plate under
the Australian Plate off the east coast
of the North Island of New Zealand.

 Geodetic observations indicate
along-strike variations in subduction-
thrust slip behavior along the |
Hikurangi margin. -
« Subduction-thrust of the southern
segment of the margin is locked on the

30-100-year scale o Tectonic Ise'ttiﬁg'aroulnd New Zealand.
* In the northern segment it displays AF-Alpine Fault
periodic slow-slip on the 1-2-year scale. FSM-Fiordland subduction margin

HSM-Hikurangi subduction margin
‘@ O \ KT-Kermadec Trench

40°




Context and Rationale

 Along-strike variation in subduction  Ultra-long duration seismic ground motion
thrust-slip behavior In the northern Hikurangi margin
* Hypothesised to be due to spatial « Attributed to be due to a sediment wedge with
variations in porosity, potentially linked low shear-wave speeds

with elevated pore-pressure
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Seismic Wave Velocity

*Vp * Vs
« Compressional (P) - wave velocity « Shear (S) - wave velocity
 Function of bulk modulus, shear modulus « Function of shear modulus and density
and density

« Ambiguous indicator of a rock’s lithology

o VIV
* Directly related to the Poisson’s ratio
 Diagnostic property of a rock’s degree of consolidation and porosity
« Consolidated sediments and crystalline rocks =1.6 - 1.9
» Unconsolidated sediments = 2.0 — 4.0

(©EOoM



Mode-converted waves from controlled
sources in OBS data

 Most controlled-source ocean bottom seismic studies focus on
determining the compressional (P-) wave velocity structure.

By identifying mode-converted waves in the ocean bottom
seismometers, the shear (S-) wave velocity structure can be estimated.

* Vo/Vq ratio can be determined more accurately than passive-source
seismic tomographic methods.

« Time and location of controlled-sources known accurately from GPS clocks.
» Uncertainties can be guantified.

* Closely spaced controlled-sources provide higher resolution and better
ray coverage In offshore regions.

(©EOoM
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Controlled-source
Seismic Data

Seismogenesis at Hikurangi Integrated
Research Experiment (SHIRE)

« Controlled-source seismic data acquired in
2017 by R/V Marcus G Langseth and R/V
Tangaroa

* 49 ocean bottom seismometers (OBS) of
SHIREO3 transect along Hikurangi forearc

* Multicomponent
« Triaxial seismometer
» Hydrophone
« ~10 km spacing along Hikurangi forearc

* Multichannel seismic (MCS) acquisition
« 12.7 km long streamer
 Airgun source spaced 50 - 100 m

@ Ocean bottom seismometer stations
@C-H along SHIREO3 transect




* Processing OBS gathers
« Determining orientation of horizontal components of each OBS

« Rotation of the horizontal components into radial and transverse
components

* Improving signal to noise ratio
« Bandpass filtering (1-20 Hz)
« Automatic gain control
 Predictive deconvolution

e |dentification of mode-converted waves
» Estimation of Vp/V¢
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* PSS

- Down-going P-wave converts to S-wave at an
interface

« Slow apparent velocity
» Not recorded by hydrophone

* PPS

« Up-going P-wave converts to S-wave at an

interface

* Lags behind the P-phase

« Same apparent velocity as P-phase o, — —=" c

 Not recorded by hydrophone \{?--...____’___..-—”,/’ PES_Con\_/V;?sviin

Ssae ,/" PPS Conversion

’ P.SP Dl PSP Conversion

Down-going P-wave converts to an S-wave at :
an interface and again to P-wave on its way Types of mode-converted waves observable in an

up to the OBS ocean bottom seismometer from airgun sources

« Slower apparent velocity
« Recorded by hydrophone




ldentification of mode-converted waves

« Mode converted waves are identified in
the radial and transverse components

* Following approaches are used to

identify

Ifferent mode-converted waves

* Polarisation angle of arrivals

A measure of the polarisation angle of
the particle motion from the three
seismograph components (Flinn, 1965)
Distinguish incoming S-waves to OBS

Incoming S-waves have higher polarization
angles (e.g. PP,S,)

* Rectilinearity of arrivals

A measure of the the linearity of the
particle motion from the three
seismograph components.

Can be define as 1 — ellipticity (Flinn,
1965)
Distinguish water column multiples

Water column multiples are linear (e.g. P, mul)

 Hydrophone component

Does not record incoming S-waves

« Apparent velocity

(©EOoM

Horizontal slowness
ldentify S-wave refractions
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‘Controlled Source OBS

 PPS Converted Waves 0B AV VA
» Can be used to estimate V,/Vq . P ffg:, 3
above the converting interface Sediments il a/
* PP,S,
- PP_S,
« PP_S,

« PSS Converted Waves

« Some hardly distinguishable
candidates

OB = Ocean Bottom, S-B = Sediment-Basement,
TOC = Top of Oceanic Crust
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V 2AT+(t, — t
£ = Up ~ tpsf) (Tsuji et al., 2011)
Vs (tp — tpsf)
« AT =Time lag between P phase and PPS phase
- t, = Zero offset travel time of P phase

* t,sf = Zero offset sea-floor reflection time

(b)

TIME

Reflected P Phases

OFFSET —_—




Results and Discussion

174° 175° 176° 177 178° 179°

* Average Vp/Vs of the forearc in the southern
Hikurangi margin
 1.70 (between OBS301-312)

* Indicates the presence of consolidated sediments
with low pore-pressure

« Determined from the time lag of the observed PPS
converted waves

* Impedance contrasts at the top of oceanic crust and
the sediment-basement interface for an up-going wave
are sufficient to generate S-waves

« PSS converted waves

 Were not observed

* Impedance contrasts at the interfaces for a down-going
wave are not sufficient to generate S-waves

* Next steps ...
» Extending the study to the north to estimate of V./Vqin

@ ® the northern Hikurangi forearc
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