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Introduction

• Hikurangi margin marks the 
subduction of the Pacific Plate under 
the Australian Plate off the east coast 
of the North Island of New Zealand.

• Geodetic observations indicate 
along-strike variations in subduction-
thrust slip behavior along the 
Hikurangi margin.

• Subduction-thrust of the southern 
segment of the margin is locked on the 
30-100-year scale

• In the northern segment it displays 
periodic slow-slip on the 1-2-year scale. 

Tectonic setting around New Zealand. 

AF-Alpine Fault

FSM-Fiordland subduction margin 

HSM-Hikurangi subduction margin

KT-Kermadec Trench



Context and Rationale
• Along-strike variation in subduction 

thrust-slip behavior
• Hypothesised to be due to spatial 

variations in porosity, potentially linked 
with elevated pore-pressure

• Ultra-long duration seismic ground motion 
in the northern Hikurangi margin

• Attributed to be due to a sediment wedge with 
low shear-wave speeds

Wallace et al. (2012) Kaneko et al. (2019)



Seismic Wave Velocity 

• VP

• Compressional (P) - wave velocity

• Function of bulk modulus, shear modulus 
and density

• Ambiguous indicator of a rock’s lithology

• VS

• Shear (S) - wave velocity

• Function of shear modulus and density

• VP/VS
• Directly related to the Poisson’s ratio

• Diagnostic property of a rock’s degree of consolidation and porosity

• Consolidated sediments and crystalline rocks = 1.6 – 1.9

• Unconsolidated sediments = 2.0 – 4.0



Mode-converted waves from controlled 
sources in OBS data

• Most controlled-source ocean bottom seismic studies focus on 
determining the compressional (P-) wave velocity structure.

• By identifying mode-converted waves in the ocean bottom 
seismometers, the shear (S-) wave velocity structure can be estimated.

• VP/VS ratio can be determined more accurately than passive-source 
seismic tomographic methods.

• Time and location of controlled-sources known accurately from GPS clocks.

• Uncertainties can be quantified.

• Closely spaced controlled-sources provide higher resolution and better 
ray coverage in offshore regions.



Controlled-source 
Seismic Data

• Controlled-source seismic data acquired in 
2017 by R/V Marcus G Langseth and R/V 
Tangaroa

• 49 ocean bottom seismometers (OBS) of 
SHIRE03 transect along Hikurangi forearc

• Multicomponent
• Triaxial seismometer
• Hydrophone

• ~10 km spacing along Hikurangi forearc

• Multichannel seismic (MCS) acquisition
• 12.7 km long streamer
• Airgun source spaced 50 - 100 m

Ocean bottom seismometer stations

along SHIRE03 transect

Seismogenesis at Hikurangi Integrated 

Research Experiment (SHIRE)

OBS 309



Methodology

• Processing OBS gathers
• Determining orientation of horizontal components of each OBS

• Rotation of the horizontal components into radial and transverse 
components

• Improving signal to noise ratio
• Bandpass filtering (1-20 Hz)

• Automatic gain control

• Predictive deconvolution

• Identification of mode-converted waves

• Estimation of VP/VS



Types of mode-converted waves

• PSS 
• Down-going P-wave converts to S-wave at an 

interface

• Slow apparent velocity 

• Not recorded by hydrophone

• PPS
• Up-going P-wave converts to S-wave at an 

interface

• Lags behind the P-phase

• Same apparent velocity as P-phase

• Not recorded by hydrophone

• PSP
• Down-going P-wave converts to an S-wave at 

an interface and again to P-wave on its way 
up to the OBS

• Slower apparent velocity

• Recorded by hydrophone

Types of mode-converted waves observable in an 

ocean bottom seismometer from airgun sources



Identification of mode-converted waves
• Mode converted waves are identified in 

the radial and transverse components

• Following approaches are used to 
identify different mode-converted waves

• Polarisation angle of arrivals
• A measure of the polarisation angle of 

the particle motion from the three 
seismograph components (Flinn, 1965)

• Distinguish incoming S-waves to OBS
• Incoming S-waves have higher polarization 

angles (e.g. PPnSb)

• Rectilinearity of arrivals
• A measure of the the linearity of the 

particle motion from the three 
seismograph components. 

• Can be define as 1 – ellipticity (Flinn, 
1965)

• Distinguish water column multiples
• Water column multiples are linear (e.g. Po mul)

• Hydrophone component
• Does not record incoming S-waves

• Apparent velocity 
• Horizontal slowness
• Identify S-wave refractions Polarisation angles (top) and rectilinearity (bottom) of the

arrivals windowed every 50 msec, overlain on top of the

radial component at OBS309



Identified mode-converted phases

• PPS Converted Waves
• Can be used to estimate VP/VS

above the converting interface
• PPgSb

• PPoSb

• PPoSc

• PSS Converted Waves
• Some hardly distinguishable 

candidates

OB = Ocean Bottom, S-B = Sediment-Basement,

TOC = Top of Oceanic Crust 



OBS gather records of vertical, hydrophone, radial and transverse components at OBS station 309
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Average VP/VS from PPS phases

•
𝑽𝑷

𝑽𝑺
=

𝟐∆𝑻+(𝒕𝒑 − 𝒕𝒑𝒔𝒇)

(𝒕𝒑 − 𝒕𝒑𝒔𝒇)
(Tsuji et al., 2011)

• ∆𝑇 = Time lag between P phase and PPS phase 

• 𝑡𝑝 = Zero offset travel time of P phase 

• 𝑡𝑝𝑠𝑓 = Zero offset sea-floor reflection time



Results and Discussion

• Average VP/VS   of the forearc in the southern 
Hikurangi margin

• ≈1.70 (between OBS301-312)
• Indicates the presence of consolidated sediments 

with low pore-pressure
• Determined from the time lag of the observed PPS 

converted waves
• Impedance contrasts at the top of oceanic crust and 

the sediment-basement interface for an up-going wave 
are sufficient to generate S-waves

• PSS converted waves
• Were not observed
• Impedance contrasts at the interfaces for a down-going 

wave are not sufficient to generate S-waves

• Next steps …
• Extending the study to the north to estimate of VP/VS in 

the northern Hikurangi forearc

OBS

301-312
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