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Take Home Messages:
• Observations of earthquake deformation cycle from satellite geodesy are 

increasing in quality and quantity.

• Interseismic and postseismic deformation provide powerful constraints on 

the rheology of the mid- to lower- crust.

• Interseismic strain is focused around major faults: this requires a 

relaxation time ≥ earthquake repeat time (i.e. a relatively strong material).

• Postseismic deformation transients are rapid and follow a Omori Law 

decay (V ~ t-1): this requires afterslip or power-law creep in a narrow 

shear zone.

• Combining these processes can explain the whole earthquake cycle for a 

major fault like the North Anatolian Fault.

• Inferences from geodetic data are not unique, but they can be combined 

with understanding from field and lab studies of rock rheology to test 

hypotheses.

Weiss et al., preprint: https://eartharxiv.org/8xa7j/

Key Papers:
Ingleby and Wright,  Geophys. Res. Lett. 2017

Hussain et al., Nat. Comms. 2018

https://eartharxiv.org/8xa7j/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL072865
https://www.nature.com/articles/s41467-018-03739-2


Part 1: Postseismic Deformation

From: Stephane Baize blog

http://stephaneonblogger.blogspot.co.uk/2015/11/those-faults-that-move-without-quaking.html
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Wright et al., Tectonophysics 2013: 
49 postseismic studies of 23 earthquakes

Shallow 
afterslip
only

Mid- to 
lower-crustal

Mechanisms of postseismic deformation in the literature

Viscoelastic

Deep afterslip

Afterslip + Viscoelastic
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Biased by: 
• Prejudices of authors
• Short time periods
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Ingleby and Wright, GRL 2017

• Compiled observations from the literature of 
maximum postseismic velocity as a function 
of time for 34 moderate to large continental 
earthquakes.

• Shows rapid decay for most earthquakes.
• Temporal behaviour is more diagnostic in log-

log space.
• Maximum velocities decay as ~1/t

10 yrs1 month 100 yrs1 yr1 day
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Ingleby and Wright, GRL 2017

• Compiled observations from the literature of 
maximum postseismic velocity as a function 
of time for 34 moderate to large continental 
earthquakes.

• Shows rapid decay for most earthquakes.
• Temporal behaviour is more diagnostic in log-

log space.
• Maximum velocities decay as ~1/t
• Normalised data shows a remarkably simple 

pattern.

10 yrs1 month 100 yrs1 yr1 day
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Ingleby and Wright, GRL 2017

• Observations are incompatible with uniform 
linear Maxwell rheology (effective viscosity 
increases with time)
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Ingleby and Wright, GRL 2017

• Observations are incompatible with uniform 
linear Maxwell rheology (effective viscosity 
increases with time).

• Burgers rheology can match spread of data 
but does not give ~1/t decay observed.
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Ingleby and Wright, GRL 2017

• Observations are incompatible with uniform 
linear Maxwell rheology (effective viscosity 
increases with time).

• Burgers rheology can match spread of data 
but does not give ~1/t decay observed.

• Rate and state frictional afterslip (steady 
state) predicts observed temporal decay:

𝑉 𝑡 =
𝑉0

1 +
𝑡
𝜏

• Note this is of identical form to Omori’s Law 
for aftershock decay:

𝑛 𝑡 =
𝐾

𝑡 + 𝑐 𝑝

[if 𝑣 𝑡 = 𝑛 𝑡 , 𝑐 = 𝜏, 𝐾 = 𝑉0𝜏, and 𝑝 = 1].
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Ingleby and Wright, GRL 2017

• Observations are incompatible with uniform 
linear Maxwell rheology (effective viscosity 
increases with time).

• Burgers rheology can match spread of data 
but does not give ~1/t decay observed.

• Rate and state frictional afterslip (steady 
state) predicts observed temporal decay:

𝑉 𝑡 =
𝑉0

1 +
𝑡
𝜏

• Note this is of identical form to Omori’s Law 
for aftershock decay:

𝑛 𝑡 =
𝐾

𝑡 + 𝑐 𝑝

[if 𝑣 𝑡 = 𝑛 𝑡 , 𝑐 = 𝜏, 𝐾 = 𝑉0𝜏, and 𝑝 = 1].

• Power-law creep in a shear zone can only 
match observations if n is higher than usual 
range of experimentally-determined values.
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Interseismic deformation (in most cases) is focused around faults (and can be modelled with a screw dislocation)
We found 187 examples of this in Wright et al., Tectonophysics 2013
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Question: Do strain rates vary throughout the seismic cycle?

• To test this, we use strain data from the North Anatolian Fault in Turkey, where 
the fault has failed at different times.

• Assuming that the system is similar along strike, present-day strain data from 
different locations give us observations at different times in the cycle.
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Measuring strain rates along the entire North Anatolian Fault

Input data sets
• Determine average line of sight velocities for period 2003 to 2010 using 14 Descending and 9 Ascending Envisat tracks.
• Process each line-of-sight velocity map using a small baselines approach in StaMPS
• Use iterative unwrapping as outlined in Hussain et al. (JGR 2016).
• Uncertainties (from overlaps) ~ 2-5 mm/yr for most tracks.
• GNSS compilation from GSRM. Used to tie InSAR to Eurasian reference frame and to constrain N-S in 3D inversion.

Hussain et al., Nat. Comm. 2018
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Combine data in 3D velocity field (at InSAR resolution)
East-West velocity field Vertical velocity field

• East-west velocities show the westward motion of Anatolia with respect to Eurasia, 
and strain accumulation across the North Anatolian Fault Zone

• Vertical motions are not systematic. Mostly within 5 mm/yr of zero. 

Hussain et al., Nat. Comm. 2018
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• Project east-west velocity field and GNSS onto fault-perpendicular profiles of fault parallel velocity.

• Solve* for slip rate and locking depth (Screw dislocation)

• Where there is creep, also solve for creep rate and depth

Assessing slip rates, locking 
depths and strain rates
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(*Bayesian Markov Chain Monte Carlo sampler)



Assessing slip rates, locking 
depths and strain rates

Hussain et al., Nat. Comm. 2018



• Slip rate shows a gradual increase from 
~22 mm/yr in East to ~26 mm/yr in West.

• Locking depth is ~constant at 16 ± 2 km

• Slip, Locking Depth, and Strain rate show no 
clear relationship to time since most recent 
earthquake.

• Strain rate at fault = 
𝑆𝑙𝑖𝑝 𝑅𝑎𝑡𝑒

𝜋(𝐿𝑜𝑐𝑘𝑖𝑛𝑔 𝐷𝑒𝑝𝑡ℎ)

• Strain rate approximately constant along fault at 
0.5 ± 0.1 mstrain/year.

Assessing slip rates, locking 
depths and strain rates
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A 250 year strain rate history the North Anatolian Fault

Derived from 
InSAR & GNSS 
velocity field

Derived from pre-1999 GNSS 
(McCluskey et al., 2000)

Derived from post-1999 GNSS 
(Ergintav et al., 2009)
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Hussain et al., Nat. Comm. 2018

Part 2: Interseismic Deformation



Result: Strain rate along the entire North Anatolian Fault is 
independent of time since the last earthquake, except in decade 
following a major earthquake.
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Hussain et al., Nat. Comm. 2018

A 250 year strain rate history the North Anatolian Fault
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Geodesist’s view of a 
fault zone

Elastic Lid

Viscoelastic substrate

Part 3: Implications for the rheology of the mid/lower crust?

Viscoelastic Coupling Model, 
Savage & Prescott 1978; Savage 2000

• Repeating earthquakes in upper layer
• Surface deformation controlled by 

parameter t0

• All else equal: 
Low  t0   implies low viscosity
High t0   implies high viscosity

𝜏0 =
𝑡𝑚
Δ𝑇

Inter-event time

Maxwell relaxation time,  
𝜂

𝜇

Hussain et al., Nat. Comm. 2018
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• Low viscosity required to 
match early high 
postseismic strains (but 
cannot match temporal 
evolution)

• Relaxation time ≥ inter-
event time (h ≥ ~1020 Pa s) 
required to give near 
constant strain many years 
after an earthquake

• Maxwell relaxation cannot 
explain postseismic 
relaxation

Hussain et al., Nat. Comm. 2018
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• Can match entire inter-
event strain history if 
postseismic deformation 
rates are controlled by 
near-fault processes (i.e. 
follow Omori’s Law) 

and
• Background substrate 

has h >~ 1020 Pa s.

Hussain et al., Nat. Comm. 2018
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• Consistent picture for all major 
strike slip faults where strain 
rate at the fault has been 
measured early and late in the 
seismic cycle.

Elliott et al., Nat. Comm. 2016
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Take Home Messages:
• Observations of earthquake deformation cycle from satellite geodesy are 

increasing in quality and quantity.

• Interseismic and postseismic deformation provide powerful constraints on 

the rheology of the mid- to lower- crust.

• Interseismic strain is focused around major faults: this requires a 

relaxation time ≥ earthquake repeat time (i.e. a relatively strong material).
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