Model investigation into rain enhancement by hygroscopic seeding in mixed-phase convective clouds

Juha Tonttila, Harri Kokkola, Tomi Raatikainen, Jaakko Ahola, Hannele Korhonen, and Sami Romakkaniemi

(juha.tonttila@fmi.fi)
Background

- Hygroscopic cloud seeding a potential way to enhance rainfall → improve water security
- Semi-idealized LES simulations based on observations at UAE
 - Moderate convective precipitation events (cloud top 8-10 km)
- Is the expected enhancement of collision-coalescence due to hygroscopic seeding the main process also in mixed-phase convective clouds?
Model

- UCLALES-SALSA
 - LES coupled with sectional aerosol-cloud microphysics model
 - Rimed ice description follows the P3 (Morrison and Milbrandt, 2015) approach
 - Rain drop formation and growth determined directly from collision-coalescence
 - Non-equilibrium condensation
Key findings

- Increased rainfall is associated with an increase in rime fraction in all simulations
Key findings

- Divide precip events into warm and cold process dominated cells (melting ice → precip as an indicator)

- Absolute rainfall & absolute increase due to seeding always larger in "cold dominated" cells → introduction of hygroscopic particles leads to significant enhancement in riming and the cold precipitation process

- Results show sensitivity to model configuration (aerosol, moisture…); investigation is on-going
Thank you!

Acknowledgements: This material is based on work supported by the National Center of Meteorology, Abu Dhabi, UAE under the UAE Research Program for Rain Enhancement Science.