ETH zürich

Topographic effects on longwave and shortwave surface radiation in a kilometre-scale regional climate model

Christian R. Steger¹, Jesus Vergara-Temprado¹, Nikolina Ban², Christoph Schär¹

¹Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland ²Department of Atmospheric and Cryospheric Sciences (ACINN), University of Innsbruck, Innsbruck, Austria

EGU 2020 - Mountain Climatology and Meteorology (CL4.17)

May 4th 2020

Preface – Evaluation of simulated snow cover duration (SCD) (I)

- Comparison of decadal-long highresolution (~2km) COSMO-CLM simulation with MODIS snow cover data (MOD10A1/MYD10A1)
- Negative biases in SCD are likely related to simple single-layer snow model (e.g. no refreezing / liquid water retention and snow-forest interactions)

(2.2 km, mean 2001 – 2008, V4.19_GPU)

Europe - Snow covered days (Jan - Dec)

© Steger / Vergara-Temprado / Ban / Schär. All rights reserved.

Preface – Evaluation of simulated snow cover duration (II)

- Zoom-in on Alps \rightarrow biases in snow cover duration seem to be linked to topography
- Plotting SCD biases of individual grid cells as function of the grid cell's aspect reveals a clear dependency, which enhances with increasing slope of the grid cell \rightarrow cause of this bias is likely related to incoming surface radiation, which controls snow ablation

2008, V4.19 GPU)

Introduction to topographic effects on surface radiation

Influence of topography on incoming surface radiation

- Shortwave (SW) radiation: Direct beam radiation is modified by shading and incident angle, diffuse radiation is altered by reduced sky view factor (SVF)
 (→ e.g. terrain reflectance)
- Longwave (LW) radiation: SVF determines radiation fraction from sky and surrounding terrain
- Example of effect: slope exposition determines incoming SW radiation and effects snow cover duration (see images)

Representation of effects in regional models

- Two-stream approximation for radiation (vertical)
 → no lateral interaction with topography
- Only a few RCM consider topographic effects on radiation → e.g. Met Office Unified Model (Manners et al., 2012) and WRF (Arthur et al., 2018)

Motivation to consider effects

- Feedbacks to atmosphere (e.g. via snow albedo)
- Improve representation of near-surface variables for downstream applications and models

Tschierv, Val Müstair, Switzerland, 30th March 2019

Overview of radiation correction scheme

Correction of radiation fluxes (based on Müller and Scherer (2005))

- Direct beam SW radiation: adjusted with slope angle (cosine-effect) and by considering shading
 → horizontal redistribution of energy influx (but no gain/loss on larger spatial scale)
- Diffuse SW radiation: scaling of incoming diffuse sky radiation with SVF; terrain reflectance is approximated with local outgoing SW flux (scaled by (1.0 – SVF))
- LW radiation: scaling of incoming sky radiation with SVF; emission from surrounding terrain is approximated with local outgoing LW flux (scaled by (1.0 – SVF))

Slope angle (COSMO-CLM @ 2.2 km and sub-grid resolution)

- In the current COSMO implementation, topographic parameters like slope angles are computed from the smoothed model topography (here at a resolution of ~2.2 km)
- However, topographic parameters can also be computed on a sub-grid resolution and subsequently be aggregated on the model grid

Sky view factor (COSMO-CLM @ 2.2 km and sub-grid resolution)

 The figure above shows that SVFs computed from model topography (~2.2 km) only marginally deviate from 1.0 (flat horizontal terrain). Incoming diffuse SW and LW radiation are thus only negligibly altered by the radiation correction scheme. Computing the SVF from a higherresolution DEM yields distinctively lower values, even if the values are aggregated on the model resolution (not shown).

Radiation correction (COSMO-CLM @ 2.2 km and sub-grid resolution)

The figure above shows the effect of the radiation correction scheme for direct beam SW radiation for a specific day (averaged over 10:00 – 16:00) and for different DEM resolutions. Apparently, the magnitude and patterns of these correction terms are rather insensitive to the chosen DEM resolution range.

- Offline experiments with the land surface model of COSMO-CLM (TERRA-ML) were conducted at a horizontal resolution of ~2 km and for 3 winters (2005 – 2008)
- The radiation correction scheme reduces biases in snow cover duration (SCD) but the bias decrease is less than expected
- Issue related to this deviating expectation: newer COSMO-CLM version (5.X_POMPA_crCLIM) simulates generally shorter snow cover durations → cause of this change currently unclear (ongoing work)

Grid cell aspect (measured clockwise from North) [deg]

(Atmospheric forcing from COSMO-CLM 5.X_POMPA_crCLIM)

Preliminary results from TERRA-ML offline experiments (II)

 The figure above shows snow water equivalent (SWE) evolution for two grid cells in Switzerland. Topographic characteristics (slope angle/aspect) of the cells are given in the upper left corner of the panels. The upper panel shows a south-facing grid cell, for which SWE is considerably reduced with applied radiation correction. The opposite effect is visible for a north-facing grid cell (lower panel).

Conclusions

- Snow cover duration (SCD) of high-resolution COSMO-CLM simulation (~2km) is well represented (with respect to MODIS snow cover data) on an European scale
- Biases in SCD are distinctively linked to topography and likely caused by an inaccurate representation of surface radiation in areas with complex topography
- Applying a radiation correction scheme on the model grid scale reduces the bias. This reduction seems to be dependent on the COSMO-CLM version and is likely linked to differing surface energy fluxes during the snow ablation phase (*ongoing work*)

Munt Buffalora, Switzerland, March 2019

References

- Arthur et al. (2018): Topographic Effects on Radiation in the WRF Model with the Immersed Boundary Method: Implementation, Validation, and Application to Complex Terrain. Mon. Wea. Rev., 146, 3277–3292, doi: 10.1175/MWR-D-18-0108.1
- Buzzi (2008): Challenges in operational numerical weather prediction at high resolution in complex terrain (PhD thesis)
- Manners et al. (2012): Radiative transfer over resolved topographic features for high-resolution weather prediction, Q. J. R. Meteorol. Soc. 138, 720 – 733, doi:10.1002/qj.956
- Müller and Scherer (2005): A Grid- and Subgrid-Scale Radiation Parameterization of Topographic Effects for Mesoscale Weather Forecast Models, Mon. Wea. Rev., 133, 1431–1442, doi: 10.1175/MWR2927.1