Near-field directionality of earthquake strong ground motions measured by displaced geological objects
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(1) Location & Summary
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- 21st May 2016 Mw 6.1 Petermann Earthquake. Reverse mechanism, 21 km surface rupture, 1m max. offset

- Granitic mylonite at surface, eroding predominately through exfoliation of 1 - 6 cm thick sheets

- Rock fragments (exfoliation sheets) inferred as coseismically displaced from bedrock based on field-observations

- Interpreted to result predominately from mainshock based on aftershock and rock fragment distribution

- Previous displaced rock studies (e.g. Borrego Mountain 1968 (Clark 1972); Hector Mine 1999 (Michael et al. 2002)) were
spatially limited, the Petermann data span ~ 100 km? area along & across rupture, with a dense dataset (n=1495)

(2) Field data & Methods
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Observations:

- Displaced rock fragments up to Skm on
hanging-wall, 2 km on foot-wall

- Coseismic timing from crushed fresh
vegetation, fresh impact sites, etc
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Field methods: n=251 rocks

- Fragments relocated (e.g. jigsaw puzzle)
- Distance & direction measured

- GPS located photographs taken

- Brief rock & outcrop description

(oRomS

vall 007 km
Low outctop

- .slope? 5%

pe: 2nd/3rd acro
Ist 160%2nd / 3rd 280°

s ‘ s
Digital methods: n=1187 rocks
- GPS photos used to locate data
- Distance and direction estimated
from compass in photo
- Brief rock & outcrop description
- Confidence / uncertainties recorded

(3) Field Directionality and Distance Data
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- Strong NE directed signal in near-rupture hanging-wall locations central to the surface rupture
- No clear directionality signals on foot-wall outcrops, and in the north-west extent of surface rupture (where slip is minimal)
- Difficult to correlate number of observed chips to location, due to dependence on number of outcrops, rock type, etc

- Generally though, more chips are observed offset close to the surface rupture on the hanging-wall
- Difficult to interpret offset distance due to individual complexity of outcrop/chip/ground motion interaction (e.g. site effects)
- Generally though, larger distances are measured closer to the surface rupture on the hanging-wall

(4) Directionality Comparison with Finite Fault Synthetic Ground Motion

- Dynamic and static displacements are
derived for bilateral & unilateral (SE
propagating, NE propagating) rupture
models
- Bilateral rupture best supports
hanging-wall rock directions, resulting
from strong fling + dynamic motions
- Foot-wall rocks and ground motions
show less directionality, as expected for a
reverse fault rupture
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(1) dynamic motions and rock displacment peaks in the same direction
(ii) static and/or dynamic motion peak opposite direction to rock displacement peak
(iii) dynamic motion peaks are not opposite or overlapping rock displacements

(5) Conclusions

- Displaced rocks in the near-field (< 5 km) of this Mw 6.1 earthquake reverse fault surface rupture exhibit non-random
displacements attributed to co-seismic ground displacements
- Bilateral finite-fault rupture is the preferred model for explaining rock directionality data

- Rock data act as dense near-field strong groung motion records, preserving directionality in dynamic and static (fling) motions
- Data demonstrate hanging-wall effects, with less directionality on the foot-wall, and intensification of motion and offset with

proximity to the surface rupture

- Rock displacement data may help resolve seismic near-field directionality for use in seismic hazard and infrastructure planning,
in the absence of dense near-field instrumentation
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