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Abstract

We use an unprecedented ensemble of regional climate model (RCM) projections over
seven regional CORDEX domains to provide, for the first time, an RCM-based global view of
monsoon changes at various levels of increased greenhouse gas (GHG) forcing. All regional
simulations are conducted using RegCM4 at a 25km horizontal grid spacing using lateral and
lower boundary forcing from three General Circulation Models (GCMs), which are part of the
fifth phase of the Coupled Model Inter-comparison Project (CMIPS5). Each simulation covers the
period from 1970 through 2100 under two Representative Concentration Pathways (RCP2.6 and
RCP8.5). Regional climate simulations exhibit high fidelity in capturing key characteristics of
precipitation and atmospheric dynamics across monsoon regions in the historical period. In the
future period, regional monsoons exhibit a spatially robust delay in the monsoon onset, an
increase in seasonality, and a reduction in the rainy season length at higher levels of radiative
forcing. All regions with substantial delays in the monsoon onset exhibit a decrease in pre-
monsoon precipitation, indicating a strong connection between pre-monsoon drying and a shift in
the monsoon onset. The weakening of latent heat driven atmospheric warming during the pre-
monsoon period delays the overturning of atmospheric subsidence in the monsoon regions,
which defers their transitioning into deep convective states. Monsoon changes under the RCP2.6

scenario are mostly within the baseline variability.



Data and Methods

Datasets:

We utilize dynamically downscaled simulations over seven CORDEX domains: Africa,
Australasia, East Asia, Central America, South America, South Asia, and Southeast Asia (Figure
1). For every region, we employ ICTP RegCM4 to downscale three CMIP5 GCMs that exhibit
adequate region-specific skills. Table 1 shows the details of RegCM4 domains, selected
parametrizations, and driving GCMs over each region. Each RegCM4 configuration utilizes
25km horizontal grid spacing and 23 levels in the vertical over a domain that follows the
latitudinal and longitudinal extent recommended by the CORDEX-CORE initiative. For GCM
downscaling, RegCM4 simulations are conducted in a transient mode from 1970 to 2100 with
annually varying greenhouse gas (GHG) forcing. For the historical period (1970 to 2005),
RegCM4 uses observed GHG forcing. For the future period (2006 to 2100), RegCM4 is forced
with projected GHG forcing RCP2.6 and RCP8.5, which represent lower and higher end
radiative forcing scenarios, respectively (van Vuuren, et al. 2011). Both future period
integrations are initialized using restart data from the last time step of the historical period
integration.

For model comparisons with observations and reanalysis, we use 1) 1° daily precipitation
from the Global Precipitation Climatology Project (GPCP) version 1.2 (Huffman, et al. 2016), ii)
monthly precipitation from 0.5° Climate Research Unit Timeseries (CRU TS) version 4.03
(Harris, et al. 2014), and iii) monthly atmospheric divergence, winds and temperatures from the

0.25° European Reanalysis 5 (ERAS) reanalysis data (C3S 2017).



Methods:

We utilize the Feng et al. (2013) analyses framework to calculate dimensionless
seasonality index (hereafter seasonality), relative entropy, and the timing of centroid at each grid
point. For each hydrological year (October to September), we calculate the relative entropy at

each grid point using the following expression:
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Where Pb,,,, is the precipitation probability in a month m of year y, calculated as the fraction of
annual precipitation in year y falling in the month m. g,,represents the uniform distribution and
has value of 1—12 for all months. Relative entropy provides a measure of distance between the

simulated monthly precipitation and the uniform distribution. Higher values of entropy suggest
the non-uniformity of monthly precipitation in a given year, implying that precipitation is more
distributed around the wet season. Subsequently, seasonality of precipitation is calculated as a
multiplicative product of relative entropy and the annual mean precipitation. In order for the
results to be comparable across different CORDEX domains, datasets (observations, model
simulations), and simulation periods (historical, future), we normalize the results using the
maximum precipitation (P, )found over all datasets and simulation periods. Therefore, the

expression for seasonality can be written as:
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The maximum value of seasonality can be reached if a grid point receives P, in a
single month, which implies that regions with low annual precipitation will exhibit low

seasonality even if precipitation distribution across the months is highly nonuniform.



Furthermore, we calculate the timing of centroid using the first moments of monthly mean
precipitation, which corresponds to the timing when 50% of the annual precipitation is reached
in a hydrological year. Further details of the methodology and mathematical expressions can be
referred to Feng et al. (2013).

Additionally, we calculate the monsoon onset pentad (5-day average) at each grid point
following a methodology adopted from Bombardi and Carvalho (2009). For each analysis time
period, we use the climatological pentad time series at each grid point to calculate the sum using

the following expression:

pentad (3)

S(pentad) = z (P,—P)

n=pentad,
Where P represents the climatological annual mean and P, represents the nth pentad of
precipitation. Subsequently, the monsoon onset and monsoon demise at each grid point are
defined as the pentad after the minimum S and the pentad after the maximum S, respectively.
Our approach is relatively simple and slightly different when compared to Bombardi and
Carvalho (2009), yet it yields similar results when applied to the climatological data.

We utilize 1995 to 2014 as the reference historical period used for comparisons with
observations and reanalysis, and for the calculation of future changes in the 21st century. The
reference period during 2006 to 2014 is taken from the RCP8.5 simulations. There is not much
difference between RCP8.5 and RCP2.6 radiative forcing, and corresponding RegCM4
simulations for this time period. Therefore, no noticeable impact on future changes are expected
due to this methodological choice. We use two 20-year time slices from the RCP2.6 and RCP8.5
model integrations to calculate changes in the mid-century (2041 to 2060) and the late century

(2080 to 2099) period. All results are shown as an ensemble mean of three ensemble members



over each domain while the robustness of future changes is being tested using the baseline
variability as a threshold at each grid point. The late century period (2080 to 2099) changes over
Africa are based on the downscaling of only two GCMs (HadGEM2-ES and NorESM1-M, Table

1), since the third ensemble member was not available at the time of analyses.

Summary of Results:

In this study, we have provided, for the first time, a global view of changes in monsoon
characteristics based on a large ensemble of high-resolution RegCM4 experiments for two
different GHG forcing scenarios. The evaluations of the RegCM4 ensemble mean demonstrates
the ability of the model to reasonably reproduce the inter-hemispheric transition of the monsoon
seasons and the evolution of the seasonal monsoon characteristics in different regions. Monsoon
systems around the world are projected to experience unprecedented changes in monsoon
precipitation characteristics, including shrinking of the rainy season, delays in monsoon onset
and demise, and substantial changes in the magnitude of seasonal precipitation, especially under
the high-end RCP8.5 scenario. For this scenario, most of the projected changes become spatially
robust and greater than the baseline variability towards the end of the 21 century. A robust
relationship between the projected pre-monsoon drying and delays in the monsoon onset exists
across regional monsoons, as a weakening of latent heat driven atmospheric warming during the
pre-monsoon period delays the overturning of atmospheric subsidence in the monsoon regions.
In response to the RCP2.6 forcing, which corresponds to a scenario of strongly reduced GHG
emissions by the end of the century, most of the regional monsoons exhibit small changes within
the baseline variability. This illustrates the strong added value in reducing emissions for global

economies, in particular, for currently poor and more vulnerable tropical countries.
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Region Physics Schemes Parameterization Driving GCMs
Boundary Layer Holtslag [1]
Africa Cumulus (Land) Tiedtke [5] HadGEM2-ES [2]
500x480 Cumulus (Ocean) Kain-Fritsch [6, 7] MPI-ESM-MR 3]
(25km) Microphysics SUBEX [8] NorESM1-M [4]
Ocean Flux Zeng [9]
Boundary Layer Holtslag
q n HadGEM2-ES
Australasia Cumulus (Land) Tiedtke MPI-ESM-MR
338x416 (25km) Cumulus (Ocean) Tiedtke NorESM1-M
Microphysics SUBEX
Ocean Flux Zeng
Boundary Layer Holtslag
Central America Cumulus (Land) Em:dnuell [11] HadGEM2-ES
Cumulus (Ocean) Kain-Fritsch MPI-ESM-MR

573x373 (25km)

Microphysics SUBEX GFDL-ESM2M [10]
Ocean Flux Zeng et al.
Boundary Layer Holtslag
Cumulus (Land) Tiedtke HadGEM2-ES
SS 603“):;.3?1(2?;1‘;‘1) Cumulus (Ocean) Kain-Fritsch I\T/{IZII'_]?SS;\/IAI_E\I/\I/IR
Microphysics SUBEX
Ocean Flux Zeng
Boundary Layer UW PBL [12]
South Asia Cumulus (Land) ErTlanuel I\}/Il‘,;’(i-GEESI;\/I/IZ-;\]/EHS{
429x337 (25km) Cumulus (Oc.ean) Tiedtke
Microphysics SUBEX MIROCS [13]
Ocean Flux Zeng et al.
Boundary Layer Holtslag
Southeast Asia Cumulus (Land) Tiedtke HadGEM2-ES
338x192 Cumulus (Ocean) Tiedtke MPI-ESM-MR
(25km) Microphysics SUBEX NorESMI-M
Ocean Flux Zeng
Boundary Layer Holtslag
East Asia Cumulus (Land) Emanuel HadGEM2-ES
384x250 Cumulus (Ocean) Emanuel MPI-ESM-MR
(25km) Microphysics SUBEX NorESM1-M
Ocean Flux Zeng

Table 1 RegCM4 configuration over various CORDEX domains
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Figure 1. Different RegCM CORDEX domains used in the analyses. The
colored land area within each domain reflects the region that has been
used from each RegCM integration for spatial plots. Boxes represent
areas used for various zonal average analyses.
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Precipitation Characteristics over Monsoon Regions
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Comparison between the CRU observations and the RegCM

ensemble mean during the 1995 to 2014 period. Seasonality (q, b), rela-
tive entropy (c, d), timing of centroid (e, f ), peak season precipitation (g,
h). Values are masked in the bottom three rows where seasonality is <
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Figure 3. Monsoon onset and demise over land in the reference period
(1995 to 2014) in the GPCP Observations (a,c), and the RegCM ensemble
(b,d). White land areas are masked where observed seasonality is < 0.025.

Results are

not meaningful outside the monsoon regions.



Near-term Future (2041 to 2060) Changes w.r.t. 1995 to 2014
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Figure 4. Simulated projected changes in the near-term future (2041 to
2060) with respect to the 1995 to 2014 period under RCP2.6 and RCP8.5.
Seasonality (a, b), entropy (c, d), fiming of centroid (e, f ), peak season
precipitation (g, h). Stippling represents those regions where projected
changes are greater than the reference period variability. White land
areas are masked where observed seasonality is < 0.025.
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Long-term Future (2080 to 2099) Changes w.r.t. 1995 to 2014
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Figure 5. Simulated projected changes in the far future (2080 to 2099)
with respect to the 1995 to 2014 period under RCP2.6 and RCP8.5. Sea-
sonality (a, b), entropy (c, d), fiming of cenftroid (e, f ), peak season pre-
cipitation (g, h). Stippling represents those regions where projected
changes are greater than the reference period variability. White land
areas are masked where observed seasonality is < 0.025.
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Future Changes w.r.t. 1995 to 2014
2041 to 2060 » Monsoon Onset

o 73

Demise

Figure 6. Simulated projected changes in the monsoon onset (a to d)
and demise (e to h) in the RCP2.6 (left column) and the RCP8.5 (right
column). Changes are shown for the near-term (2041 to 2060) and the
long-term (2080 to 2099) with respect to 1995 to 2014. White land areas
are masked where observed seasonality is < 0.025. Results are not mean-
ingful outside the monsoon regions.
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Figure 7. Latitude-height cross-section of divergence (1/s) and vertical pressure velocity

(Pa/s) in ERAS (left three columns) and RegCM (right three columns), shown as wind vec-

tors averaged over West Africa (al-aé; 15W to 15E, 2N to 20N), South Asia (b1-bé ; 70E to
95E, 5N to 35N), South America (cl1-cé; 60W to 40W, O to 30S), and Southeast Africa

(d1-dé; 15E to 45E, 5S to 30S). Colored contours represent vertical pressure velocity. Black

arrows represent the direction of the monsoon along the latitude. Both vertical pressure
velocity and divergence have been exaggerated by 50 and 10¢in all plots. Vertical pres-
sure velocity is multiplied by -1 so that positive values represent an upward motion. The
three panels in each case represent averages over pre pre-monsoon, pre-monsoon and
monsoon periods. The Pre-monsoon period represents the average over the two months
prior fo the monsoon season. The pre pre-monsoon period represents the average over
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Zonally Averaged Precipitation over Monsoon Regions
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Figure 9. Zonally averaged 5-day mean precipitation (1995 to 2014) in the GPCP
observations (first column) and in the RegCM simulations (second column) over West
Africa (a, b; 15W to 15E, 2N to 20N ), South Asia (e, f; 70E to 95E, 5N to 35N), South
America (I, j; 80W to 40W, 10N to 35S), and Southeast Africa (m, n; 15E to 45E, 5S to 30S).
Mid-term (2041 to 2060) and long-term (2080 to 2099) future changes in zonal average
5-day mean precipitation under RCP8.5. Africa (c, d), South Asia (g, h), South America
(k, 1), and South Africa (o, p). The vertical lines in each panel represent the approxi-
mate climatological timing (in pentads) by when most of the region receives earliest
monsoon precipitation in the observations as shown in Figure 3.



Zonally Averaged Precipitation over Monsoon Regions

Reference Period (1995 to 2014) Changesinw.r.t. 1995 to 2014
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Figure 10. Same as in Figure 9 but for Australia (a-d; 130E to 150E, 10S to 20S ), East
Africa (e-h; 32E to 50E, 2N to 20N), East Asia (i-I; 110E fo 140E, 20N to 40N), Southeast
Asia (m-p; 95E to 110E, TON fo 25N), and North America (g-t; 114W fo 104W, 22N to
40N).
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Figure 11. Pre-monsoon precipitation during 1995 to 2014 in a) CRU obser-
vafions, b) RegCM ensemble. Changes w.r.t. 1995 to 2014 in pre-mon-
soon precipitation during c) 2041 to 2060 and d) 2080 to 2099 under
RCP8.5. The pre-monsoon precipitation represents the average of the
two months before the monsoon season.



Zonally Averaged Upper Tropospheric (500mb fo 200mb) Temperatures

Historical Comparison (1995 to 2014) Future Changes (2080 to 2099)
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Figure 12. Departure of zonally averaged monthly upper tropospheric tem-
peratures from the annual mean over West Africa (a to c), South Asia (d to f),
South America (g to i) and Southeast Africa (j to l). The first and second column
show comparisons between ERAS5 and RegCM in the reference period (1995 to
2014). The third column shows the projected changes in the late-century (2080
to 2099) period under RCP8.5 with respect to the reference period. All domains
are identical to the ones used in Figure 7, except for West Africa, which extends
further down to 5S. Black contours represent the zero line. The grey dofted line
represents approximate timing of the earliest onset over land and the black
arrows represent the direction of the monsoon progression along the latitude
over each region.



Zonally Averaged Upper Tropospheric (500mb to 200mb) Temperatures
Historical Comparison (1995 to 2014)
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Figure 13. Same as in Figure 12, but for Australia (a to ¢), East Africa (d to f), East
Asia (g toi), Southeast Asia (j fo I) and North America (m to f). All domains are
identical to the ones used in Figure 7, except for Australia, which extends
further north to the equator, and North America, which extends further down to
10N. The black contours represent the zero line. The grey dotted line represents
the approximate timing of the earliest onset over land and the black arrows
represent the direction of the monsoon progression along the latitude over

each region.
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Divergence (x 106) and Vertical Velocity (x 50) Vectors with Vertical Velocity (x 50)
as Colored Contours (Changes in RCP8.5 2080 to 2099 w.r.t 1995 to 2014)
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Figure 14. Changes (RCP8.5 2080 to 2099 w.r.t 1995 to 2014) in latitude-height cross-section
of divergence (1/s) and vertical pressure velocity (Pa/s), shown as wind vectors aver-
aged over latitudes used in Figure 7 and 8. West Africa (al, a2), South Asia (b1, b2), South
America (cl, c2) , and Southeast Africa (d1, d2), Australia (el, €2), East Africa (f1, f2),
East Asia (g1, g2), Southeast Asia (h, -h2) and North America (i1, i2) . Colored contours
represent the vertical pressure velocity. Both vertical pressure velocity and divergence
have been exaggerated by 50 and 10 in all plots. Vertical pressure velocity is multiplied
by -1 so that positive values represent an upward motion. The two panels in each case
represent the averages over the pre-monsoon and monsoon periods. The pre-monsoon
period represents the average over two months prior to the monsoon season.



