Stochastic modelling and prediction of monthly surface temperature: StocSIPS

Stochastic Seasonal to Interannual Prediction System

Lenin Del Rio Amador and Shaun Lovejoy

Preprocessing

The temperature at every location is:

$$T(x,t) = T_{ac}(x,t) + T_{anth}(x,t) + T_{nat}(x,t)$$

$$T_{\text{anth}}(x,t) = \lambda_{2 \times \text{CO,eq}}(x) \log_2 \left[\rho_{\text{CO,eq}}(t) / \rho_{\text{CO,eq,pre}} \right]$$

 $\lambda_{2 \times \text{CO}_2\text{eq}}(x)$ is the transient climate sensitivity at position x related to the doubling of atmospheric equivalent-CO₂ concentrations.

Example at position (50.0°N, 2.5°E):

Scaling

The fluctuations of the natural variability satisfies:

$$\left\langle \left| \Delta T \left(\Delta t \right) \right| \right\rangle \propto \Delta t^H$$

Equivalently for the spectrum:

$$E(\omega) \propto \omega^{-\beta}$$

with
$$\beta = 1 + 2H$$

Spectrum:

Scaling

Either the detrended anomalies $T_{\rm nat}(t)$ or its first differences $\delta T_{\rm nat} = T_{\rm nat}(t) - T_{\rm nat}(t-1)$ show a single scaling regime for time scales between one month and many decades with fluctuation exponent:

$$-1 < H < 0$$

Examples at (50.0°N, 2.5°E - land) and (7.5°S, 30°W – tropical ocean) :

Stochastic modelling

The natural variability, $T_{\rm nat}$ (or its first differences, $\delta T_{\rm nat}$) can be modeled by a <u>fractional Gaussian noise</u> (<u>fGn</u>) process with parameters σ (volatility) and H (fluctuation exponent). We assume the series have zero mean. The raw temperature at every location is determined by only 3 parameters (σ , H, $\lambda_{\rm 2xCO2eq}$):

(c)

Model validation

We performed monthly hindcasts for the verification period 1951-2019 using as observational reference NCEP/NCAR Reanalysis interpolated to a 2.5° latitude \times 2.5° longitude grid across the globe for a total of 73 \times 144 = 10512 grid points.

Comparison between the RMSE_{nat} obtained from hindcasts and the theoretical RMSE_{nat} predicted by the theory for different forecast horizons, k, from 1 to 12 months. The black line at 45° is a reference indicating perfect agreement between theory and verification results. The blue points represent locations where H < 0 and the natural variability is modeled as an fGn process and the red points are for places where H > 0 and we have to take the first differences.

Normalized Root Mean Square Error (NRMSE)

Mean Square Skill Score (MSSS)

0.5 0.6 0.7

Anomaly Correlation Coefficient (ACC)

Are results from GCM multi-model ensemble (MME) predictions taken from: Kim G, Ahn J-B, Kryjov VN, et al (2016) Global and regional skill of the seasonal predictions by WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble. Int J Climatol 36:1657–1675. doi: 10.1002/joc.4449

Conclusions

StocSIPS performance

- -Anomalies: StocSIPS has higher skill than GCMs for two months and longer.
- -Actuals: Higher skill at all lead times due to direct forecasting of real world climatology.
- -StocSIPS relative advantage: increases with lead time and is higher over land than oceans.

StocSIPS' advantages include

- -No data assimilation
- -No ad hoc post processing
- -No need for downscaling
- -Speed (for an infinite ensemble): (factor 10⁵- 10⁶)

References:

- Del Rio Amador, L. and Lovejoy, S. (2019) *Clim Dyn*, **53**: 4373. https://doi.org/10.1007/s00382-019-04791-4
- Lovejoy, S., Del Rio Amador, L., Hébert, R. (2017) In *Nonlinear Advances in Geosciences*, A.A. Tsonis ed. Springer Nature, 305–355 DOI: 10.1007/978-3-319-58895-7