

Subpixel Classification of anthropogenic features using Deep Learning on Sentinel-2 Data

Background & Workflow

Fig 1. Workflow

Deep Learning models

- DeepLab[1] Model with three channel Input (RGB)
- DeepLab with nine channels as input
- A novel late fusion approach based on DeepLab
- U-Net[2] with three channels as input
- U-Net with nine channels as input

Fig 2. Late Fusion DeepLab

Results for our initial area

Fig 3. Ground truth

Fig 4. Nine Channel DeepLab

[1] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation, 2017. [2] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation, 2015.

Nikolaos Ioannis Bountos^{1,2}, Melanie Brandmeier¹ 1. Esri Deutschland GmbH, Ringstraße 7, D-85402 Kranzberg; 2: TUM, Boltzmannstr. 3, D-85748 Garching

- Constantly changing urban areas.
- Periodical utilization of unmanned aerial vehicles for high resolution images is expensive.
- Increasing availability of satellite images such as Sentinel-2.
- Exploitation of the multispectral information contained in Sentinel-2 images.

Data and Workflow

- Data: Sentinel-2 resampled to 1m spatial resolution
- Features: Buildings, Rivers, Railways and
- The workflow is shown in Fig. 1. In addition, we test the effect of using multitemporal

Fig 5. Random Forests prediction

nitial Dataset							Multitemporal Dataset						
ffec	t of	mult	item	poral	data	a on pi	ctions						
Vethod	Overall Accuracy	Buildings	Streets	Railway	River	Background	Method	Overall Accuracy	Buildings	Streets	Railway	River	Backgrour
J-Net 3 hannels	10%	24%	19%	3%	49%	2%	U-Net 3 channels	16%	5%	13%	54%	15%	15%
l-Net 9 hannels	11%	58%	2%	5%	14%	8%	U-Net 9 channels	39%	0%	6%	37%	11%	49%
eepLab 3 hannels	88%	50%	54%	69%	93%	94%	DeepLab 3 channels	87%	36%	44%	67%	94%	94%
eepLab 9 hannels	89%	60%	59%	73%	92%	94%	DeepLab 9 channels	87%	33%	48%	74%	95%	94%
ate Fusion DeepLab	88%	55%	51%	71%	93%	94%	Late Fusion DeepLab	87%	30%	50%	71%	94%	93%
Table 1. Overall accuracies of models trained on the initial dataset						Table mult	Table 2. Overall accuracies of models trained on multitemporal data						

Initial Dataset

Conclusions

- It is possible to identify features such as Buildings, Rivers, Streets and Railways that are partly represented on a subpixel level in Sentinel-2 using advanced deep-learning approaches.
- Accuracy, however, is still not enought for monitoring purposes.
- Using multitemporal data significantly improves the power of generalization of the architectures
- The integration into GIS could help planning an support decisionmaking

Transferability to a different area

Example: Nine Channel DeepLab

Fig 7. Nine channel DeepLab prediction, trained on initial dataset

Multitemporal Dataset

Fig 8. Nine channel DeepLab prediction, trained with augmented dataset.

Technische Universität München