

(EGU General Assembly 2020 **Exploring nature-based** adaptation options for improved water security in the deglaciating **Andes of Peru**

Fabian Drenkhan, Boris F. Ochoa-Tocachi, Pedro Rau, Walescka Cachay, Nilton Montoya, Waldo Lavado, Vivien Bonnesoeur, Javier Antiporta, Gustavo Valdivia, Francisco Román, Wouter Buytaert

Fabian Drenkhan^{1,2,3}, Boris F. Ochoa-Tocachi^{1,3,4}, Pedro Rau⁵, Walescka Cachay⁵, Nilton Montoya⁶, Waldo Lavado⁷, Vivien Bonnesoeu^{1,3,4}, Javier Antiporta^{3,4}, Gustavo Valdivia⁸, Francisco Román^{1,3,4} and Wouter Buytaert^{1,3}

Shrinkage of tropical glaciers in Peru

- As part of the tropical region, Peruvian glaciers are among the most vulnerable to climate change impacts indicating accelerated shrinkage rates
- Glacier shrinkage and potential degradation of high-Andean ecosystems (e.g. fragmentation of peat bogs) would lead to severe consequences in spatiotemporal water availability

Shrinkage of tropical glaciers in Peru

- Current shrinkage (1988-2016): area: -37%, volume: -20%
- Future glacier areas could substantially decrease until 2050 (~-40%) and heavily reduce until 2100 (~-40-90%)
- Andean landscapes could be mostly glacier-free with some remaining glaciated peaks over ~6000 m asl. until 2100 and beyond
- However: limited in-situ measurements and high uncertainties

Understanding human vulnerabilities to melting glaciers

- This situation poses considerable threats to local communities and downstream water users who often indicate high vulnerability levels
- Need for integrated analyses of multiple variables of change and use of flexible and robust methods for data collection
 and adaptation strategy development in a context of increasing water insecurity

Vilcanota-Urubamba basin

Approach

 Pairwise catchment monitoring (glaciated, nonglaciated, wetlands) to acquire a better understanding of the spatio-temporal patterns of glacial and non-glacial streamflow

EGU^{General} 2020

- Inclusion of local researchers and community members using lowcost sensor constructed at ICL
- Scaling-up of experiences to other subcatchments

Glacio-hydrological monitoring

E.g..: Salcca-Sibinacocha subcatchment

Approach

Potential impacts on hydrological ecosystem functions

natural infrastructure intervention	Hydrological regulation	Groundwater recharge	Overall water yield	Erosion control	Filtration of contaminants
Wetland conservation	+	+		+	+
Wetland restoration	+	+	-	+	+
Grassland (puna) conservation	+	?		+	+
Grassland (puna) restoration	+	?	- +	+	+
Forest conservation (avoided deforestation)	+	?		+	+
Forest restoration/reforestation	+	?	-	+	+
Infiltration trenches	+	+		+ -	
Amuna restoration	+ +	+			
Terraces	+	?		+	
Riparian buffers	+			+	+
Buffer zones around agricultural fields	+			+	+
Conservation agriculture					+

Natural Infrastructure

Ancestral infiltration systems

Pre-Inca infiltration enhancement system (amunas, mamanteo)

Ochoa-Tocachi et al. 2019, NatSust

1/2: diversion canals, 3/4: infiltration canals, 5: infiltration hillslopes, 6: springs, 7: ponds TI: tracer injection, TS: tracer sampling (TS)

¿Questions?

Fabian Drenkhan <u>f.drenkhan@imperial.ac.uk</u> Boris Ochoa-Tocachi <u>boris.ochoa13@imperial.ac.uk</u>