Neural Supermodeling

Wim Wiegerinck (w.wiegerinck@science.ru.nl)

3. Research Question

Can a convolutional neural network (CNN) improve linear / weighted averaging methods for model combination used in e.g. ensembles or SUMO?

Is this feasible? With so many variables involved and parameters to optimize? Based on limited amount of data?

First step: **proof of principle** with *artificial* assumed ground **truth** model and *artificial* **imperfect** models.

4. Experimental scenario

Three level quasi-geostrophic model T21 [4]

Simulates the wintertime atmospheric flow in the Northern Hemisphere quite realistically with a climatology with multiple weather regimes that are also found in observations.

Dynamical system for potential vorticity (PV)

 $\dot{q_1} = \mathcal{J}(\psi_1, q_1) - D_1(\psi_1, \psi_2) + S_1,$ $\dot{q_2} = \mathcal{J}(\psi_2, q_2) - D_2(\psi_1, \psi_2, \psi_3) + S_2,$ $\dot{q}_3 = \mathcal{J}(\psi_3, q_3) - D_3(\psi_2, \psi_3) + S_3,$

Imperfect models

For benchmarking, we simulate four **imperfect models** by **perturbing parameters** of the **Truth** as in [3],

	$ au_{\mathrm{E}}$	R_1	R_2
Truth	2.0	0.1150	0.0720
Model 1	1.5	0.1165	0.0705
Model 2	1.5	0.1130	0.0725
Model 3	2.4	0.1130	0.0705
Model 4	2.4	0.1165	0.0725

 $\tau_{\rm F}$ – timescale in days of the **Ekman damping** R_1 – Rossby radius of deformation of the 200–500 hPa layer R_2 – Rossby radius of deformation of the 500–800 hPa layer.

Data set

Daily observations $q(x,y,z,t) \stackrel{\text{def}}{=} q(t)$ were simulated by running the *truth* from t = 0 until t = 3000 (t in days).

Starting from each daily observations, the four imperfect models predicted $\Delta t = 1 \dots 7$ days ahead. This yielded 2400 imperfect predictions $q_{\mu}(t+\Delta t; \mu)$ for $\mu=1..4$ and $\Delta t = 1 \dots 7$ days ahead (so 4x7x3000 predictions).

Imperfect models, predict $\Delta t = 1, 2, ... days$ ahead

4. Linear models and deep **Convolutional Neural Network (CNN)** Input and output layer

Linear models:

- $q_{pred}(x,y,z,t) =$ • $\Sigma_{\mu} q_{\mu}(x,y,z,t+\Delta t)/4$ (Average) • $\Sigma_{\mu} w_{\mu}(z) q_{\mu}(x,y,z,t+\Delta t)$ (Global Linear) • $\Sigma_{\mu} w_{\mu}(x,y,z) q_{\mu}(x,y,z,t+\Delta t)$ (Linear per Gridpoint)

Hidden layers (only for CNN)

Training

- Trained per layer
- Loss = Mean squared error per layer
- MSE($q_{pred}^{s}(t+\Delta t)$, $q_{truth}^{s}(t+\Delta t)$) • Optimizer:
 - linear algebra to solve w (linear models) gradient descent , 200 iterations (CNN)

Test

References

1792-1818.

SNN Adaptive Intelligence and Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, The Netherlands

 Input: X*Y*M = 64*32*4 variables to represent imperfect model predictions $q_u(x,y,z,t+\Delta t)$ at time t+ Δt and layer z. • Output: X*Y = 64*32 variables to represent combined model prediction $q_{pred}(x,y,z,t+\Delta t)$ at time t+ Δt and layer z. Note: separate model trained for each z and each Δt

• 64*32*4 neurons per hidden layer • Horizonal (X-direction) periodic boundary conditions Locally connected & nonlinear & weight sharing • 4 nonlinear convolutional Layers • 2 linear skip layers • Hidden to output \rightarrow no weight sharing

• Training set: first 2400 days

• Input is scaled $q \rightarrow q^s$ per layer

• Test set: last 600 days • Data scaled using scaler from training set • Loss = RMSE ($q_{pred}^{s}(t+\Delta t)$, $q_{truth}^{s}(t+\Delta t)$) taking all layers into account

5. Experimental results

Results in **top figure** confirm [3] that averaging improve up individual imperfect model predictions and that global linear models $(\cong weighted average)$ improves even further

Results in **bottom** figure show that in this case, the linear per gridpoint and neural network improve only marginally (but statistically significant) [∞] upon weighted average per layer.

For $\Delta t < 3$, linear methods are superior to neural networks.

6. CONCLUSIONS

- A neural network (CNN) with imperfect model predictions as inputs, can improve linear models in short term prediction.
- However, in this model simulation,
- improvements upon linear models are marginal • linear methods are superior for *very short* term
- predictions

[1] van den Berge, L. A., et al. A multi-model ensemble method that combines imperfect models through learning, Earth Syst. Dynam., 2, 161–177. (2011). [2] Wiegerinck, et al. (2013). On the limit of large couplings and weighted averaged dynamics. In Consensus and synchronization in complex networks (pp. 257-275). Springer, Berlin, Heidelberg.

[3] Schevenhoven FJ, Selten F. An efficient training scheme for supermodels. Earth System Dynamics. 2017;8(2):429-438 [4] Marshall, John, and Franco Molteni. "Toward a dynamical understanding of planetary-scale flow regimes." Journal of the atmospheric sciences 50.12 (1993):

• So far only proof of concept on *artificial data of* medium size atmospheric model.

This work is partly funded by STERCP (ERC project 648982)

