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Introduction Results Discussion
Seismicity of subduction zones at upper-mantle depths is commonly explained by dehydration reactions of serpentine and ) . p —
hydrous silicates and reductions in effective pressure. However, the conditions of Wadati-Benioff zone seismicity do not strictly Unstable Localized Shear| T. = 500°C, (0,-0,). = 10MPa, w_= 0.2m, w_= 1000m, d =1000um, ffv = 0.1myr Positive feedback of 50 _ 200
correspond to temperatures and depths of serpentine dehydration, and there is no independent evidence that sea water mechanical dissipation to : Hokkaido
penetrates the lithosphere to form serpentine at depths >30km below the sea floor. Altered lithosphere may contain magnesian neat and temperature A5 ° \T\(l)hoﬁu t
carbonates in addition to hydrous silicates, both at the top of plates, where CO, of sea water reacts with mantle rocks and at Model run for a 30s time interval centered on thermal runaway in carbonate shear zone dependent strain rate . Kiias Ington
the base of plates where CO, is introduced by mantle plumes. 100 o Tokai
of shear instability 150
Adapting the thermal softening model of Kelemen and Hirth (2007), we model the strain localization and shear heating within 1300 2 1000 ,%o —
magnesite horizons embedded within an olivine host using flow laws determined experimentally for dislocation creep and 10 900 | Miode! predicton
diffusion creep of the carbonate layer and olivine host (Hirth and Kohlstedt, 2003; Holyoke et al., 2014). Strain rates predicted 1200 T 800 I 150 !
within carbonate-rich layers of downgoing slabs are much higher than those of the surrounding olivine at all conditions. 10} ©
However, shearing may be either stable or unstable depending on the relative rates of shear heating and conductive heat loss 5 1100 ~ = 700 E €
from the shear zone. Localized strain rates reach a steady state when shear heating and heat flow are balanced, while = 7:;’ 10° | @ 600 = 200 100 f
unstable strain rates are calculated where shear heating exceeds heat flow. Modeled strain rates accelerate to 10™'s™, as 3 1000 © % 500 | a 2
temperatures reach melting conditions, and stresses drop, corresponding to a seismic event. Applications of this model to the : g [ - —
double Benioff zones of the NE Japan trench predict unstable seismic shear for both upper and lower seismic zones to % 000 | & 107} g 4007
subduction depths of ~300 km. For cold downgoing slabs, such as the Tonga subduction system, unstable seismic shear is = = 300 | 250
predicted for carbonate horizons of altered downgoing slabs to depths exceeding 400 km. J . ® ool "
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Double Benioff zone are commonly explained by Serpentine alteration of upper regions of bending 1200 | (2013).
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