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Pressure gradient Velocity as 
a function of
depth

Viscosity values from 1 Thickness from 9

from 9

ρgß 1
2η

y
H

Best-fit regression line:

Alkaline basalts from 9

0 500 1000 1500-500-1000-1500 2000 2500 Distance (d) from
slab window (km)

RT = α + ß*d
α = 0.476 ± 0.012 
ß = 1.4*10-4 ± 9*10-6  
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3. Calculate flow velocities with different viscosity values.

4. Compare to independent velocity constraints from geology.

2. Convert it to an average pressure gradient.

1. Quantify the dynamic topography across the Caribbean region.velocity 
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←The Caribbean is bounded by subduction zones and continental terrains (transparent yellow polygons); therefore, the subducted slabs 
and the continental roots hinder  the asthenosphere to flow freely, but confine the flow within a narrow gateway beneath the Caribbean, a 
scenario similar to the simplified 2D model shown in  2 .  

We used seismic refraction, reflection and borehole data to build the velocity model 
of the upper most crust as a function of depth. The velocity model and the 2-way 
travel time from seismic reflection help us constrain the sediment thickness. Sub-
tracting the sediment thickness from the bathymetry, the basement depth is ob-
tained. 

The thermal age of the Caribbean lith-
osphere was was rescaled from 100 
Ma to 80 Ma based on the basalts. 

← To obtain dynamic topog-
raphy, we subtract the total 
topography from thermal 
subsidence and isostatic to-
pography. Thermal subsid-
ence is obtained from the 
plate cooling model of Rich-
ards et al. (2018) using the 
age model from Müller et al. 
(2008) (see 4 ). Isostatic 
effect was corrected using 
seismic-constrained sedi-
mentary thickness (see  5  ) 
and gravity constrained 
Moho (see  6  ). The residual 
topography (see  7 ) is gen-
erated by mantle flow and is 
our best-estimate for dy-
namic topography.

Due to the limited refraction constraints of the Moho (red lines and blue open boxes), 
we used free air gravity anomaly to constrain the Moho. Our regional gravity-con-
strained Moho model fits local Moho depth estimates from refraction studies (see 
inset).  

Independent constraints come from (1) back arc magmatism which shows clear Galapagos isotopic signatures, initiating at 
~6.5 Ma near the slab window (black circle) which opened at ~8 Ma and propagating at a rate of 5 cm/yr northward. (2) Full 
waveform tomography shows a slow velocity anomaly in the western Caribbean (west of Beata Ridge). If we assume the 
anomaly is hot mantle material flowing through the slab window, the propagation rate is ~15 cm/yr. The two cross sections 
suggest that the asthenosphere is ~200 km thick.

The dynamic topography across the Caribbean region constrains the pressure gradient that drives 
Galapagos hot mantle material flowing eastward through the slab window. Given the driving pressure 
gradient and the thickness of the asthenosphere, flow speeds depend only on the viscosity of the as-
thenosphere. A value of ~5*1018 Pa s best fits the propagation rates of the back-arc basalts and the 
imaged seismic structure.   

The concept of a weak asthenosphere sandwiched between mobile tectonic plates and mechanically strong sub-asthenospheric mantle is 
fundamental to understand plate tectonics and mantle convection. However, the quantitative estimation of absolute asthenospheric viscosity 
is highly uncertain and it varies by 1 to 3 orders of magnitude (see 1 ). Wide-range viscosity estimations come mainly from two reasons: (1) 
Most observations can be satisfied with proper viscosity contrasts –instead of the absolute viscosity– between asthenosphere and sub-asthe-
nospheric mantle. (2) The viscosity contrast trades off with the thickness of the asthenospheric layer.

Here, we estimate absolute viscosity of asthenosphere for the first time from the pressure gradient and the asthenospheric flow velocity at the 
Caribbean, using the well-established analytical solution (see 8 ). Funnelled by subduction zones and continental lithospheric roots (see 3 ), 
the Caribbean region provides a unique tectonic setting reminiscent of a plane channel (see 2 ) that closely approximates the conditions of 
the analytical solution. The asthenesphric flow at Caribbean from the Pacific towards the Atlantic has been a long-standing hypothesis. We in-
ferred the flow velocity from regional magmatism (see 9 ) and tomographic imaging with the onset time of the flow at ~8.5 Ma constrained by 
the opening of Panama slab window (see 10 ). This flow is mainly pressure-driven (i.e. Poiseuille flow), since the Caribbean has been fixed 
in mantle reference frame since Eocene. The pressure gradient (see 7 ) is calculated from the dynamic topography (see 3 ) across the Carib-
bean, obtained by removing the isostatic effect of sediments (see 5 ) and crust (see 6 ). Independent constraint of asthenosphere thickness 
of ~200km is suggested by tomography ( see 9 ).

The importance and improvement of this study are three 
folded. First, we provided a better quantified pressure gradi-
ent based on a proper isostatic correction and uncertainty es-
timations. With reasonable assumptions, we are the first 
study that use the stain rate (i.e. flow velocity) directly from 
the asthenosphere, instead of an average strain rate of the 
upper mantle from surface constraints. Finally, we show for 
the first time an on-site estimation of the viscosity where the 
asthenosphere thickness is independently constrained. Our 
results suggest the viscosity of the asthenosphere at the Ca-
ribbean is ~5*1018 Pa s, which is in line with estimates for 
non-cratonic and oceanic regions, but is significantly lower 
than post-glacial rebound estimates for cratonic regions. This 
further supports the notion that the stronger asthenosphere 
estimates are relatively limited to cratonic regions.


