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“gelifluction”. Because soliflucting soil is a complex granu
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Arctic soil movement, accumulation and stability exert a first order control on the fate of permafrost carbon in the shallow subsurface and landscape
response to climate change. A major component of periglacial soil motion is solifluction, in which soil moves as a result of frost heave and ﬂow-liie

Par—ﬂuid-ice mixture, its rheology and other material properties are largely unknown. However,
solifluction commonly produces distinctive spatial patterns of terraces and lobes that have yet to be explained, but may help constrain solifluction processes.
Here we take a closer look at these patterns in an effort to better understand material and climatic controls on soliﬁuction. We find that the patterns are
analogous to classic instabilities found at the interface between fluids and air—for example, paint dripping down a wall or icing flowing down a cake.
Inspired by classic fluid mechanics theory, we hypothesize that solifluction patterns develop due to competition between gravitational and cohesive forces,
where grain-scale soil cohesion and vegetation result in a bulk effective surface tension of the soil. We show that, to first order, calculations of lobe
wavelengths based on these assumptions accurately predict solifluction wavelengths in the field. We also present high resolution DEM-derived data of
solifluction wavelengths and morphology from dozens of highly patterned hillslopes in Norway to explore similarities and ditferences between solifluction
lobes and their simpler fluid counterparts. This work leads us toward quantitative predictions of the presence or absence of solifluction patterns and their
response to variation in material properties (e.g., vegetation, rock type, grain size) and climatic conditions (e.g., water content, active layer depth,
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We know that soil moves as a However, soliflucting soil is a complex cohesive
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1. At a fluid front, cohesion/surface tension holds back flow, causing tension, could an “eftective” surface
+ to thicken tension due to soil cohesion explain
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cohesive forces between grains and in

In addition to exhibiting similar pattern, solifluction lobes

growth of ‘"fingers" with wavelength (A). soft solids (Style et al., 2
This is called a “contact line instability.”
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Small cohesive forces between dry grains
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Bottom right: Sketch showing rollover motion in glycerine seen with dye tracking
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Field data from Norway
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Does field data agree with fluid theory/ " As fluids flow downslope, their
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(e.g., de Bruyn 2012,

The wavelength of the contact line N
instability is also determined by
viscosity, ve(ocity, and surface tension.
So we can combine these to predict
the relationship between wavelength
and contact angle
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We can use
OpenFOAM to see
if these patterns
arise at large
length scales
relevant for
solifluction. We can

also play with
ditferent
rheologies. Pre
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Classic contact line instability: small scale

OpenFOAM Fluid Modeling: Viscous flow + surface tension

U Magnitude

liminary large-scale model (viscous
newtonian fluid)




