Fire frequency influenced grazed grasslands’ resistance and resilience to extreme drought

Xiran Li1,2, Olivia Hajek2,3, Jillian LaRoe2,4, Kate Wilkins2,3, Alan Knapp2,3, Melinda D. Smith2,3
1 Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
2 Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
3 Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
4 Warner College of Natural Resources, Colorado State University, Fort Collins, CO 80523, USA

Drought and fire seem to increase and will continue increasing in both frequency and magnitude. Drought, fire, and grazing are factors influencing ecosystem functions, such as resistance and resilience. However, the combine in

Questions

In this study, we try to answer two questions:

Q1: How will grazed grassland’s functions (resistance and resilience) respond to extreme drought during and after extreme drought in recent decades?

Q2: Are the responses different between grasslands in North America and South Africa?

Data and Methods

Data:
- Landsat 5/7/8 NDVI (30m, 1984-2018)
- Global SPEI Database (0.5 deg)

Method:
(1) Homogenization (Roy et al, 2016)
(2) Resistance and resilience quantitation (Isbell et al., 2015)

Results

(1) Full recovery of productivity were observed the following year at the study sites (Fig. 2). These results suggest that grazed grasslands show high resilience, but low resistance to extreme drought.

(2) The degree of resistance and resilience were influenced by fire frequency. At Konza, during and after extreme drought in 2012, unburned grassland showed the highest resistance but lowest resilience, while grassland burned every four years and annually had lower resistance but relatively higher resilience. The resistance and resilience at Kruger exhibited an opposite pattern (Fig. 3).

Conclusion & future work

(1) Grazed grasslands at Konza and Kruger showed quick recovery from extreme drought events.
(2) Different burning frequency might influence grazed grasslands’ resistance and resilience.

Figure 2. NDVI anomaly before, during, and after extreme drought.
- at Konza (2010 – 2014), extreme drought happened in 2012;

Figure 3. Resistance and resilience of different burning treatments
- Resistance of plots at Konza during 2012;
- Resilience of plots at Konza after 2012 drought;
- Resistance of plots at Kruger during 2015 drought;
- Resilience of plots at Kruger after 2015 drought.

References


Acknowledgement

This research is supported by the CSC (Grant No. 201906775022) and NSFC (Grant No. 41901112).