Future change in precipitation seasonality over the Horn of Africa in high-resolution simulation

Pratik Kad1,2 & Kyung-Ja Ha1,2,3

1Center for Climate Physics, Institute for Basic Science (IBS), South Korea
2Department of Climate System, Pusan National University, South Korea
3Department of Atmospheric Sciences, Pusan National University, South Korea
How the precipitation seasonal cycle over HOA will respond to greenhouse warming.
Model (ultra high-resolution simulation)

- The Community Earth System Model (CESM 1.2) has been used; with horizontal resolution of 25 km in the atmosphere and 10 km in the ocean.

Present day run → 2XCO2 run → 4XCO2 run

Please attend Prof Axel Timmermann's talk for detail information about ultra high-resolution simulation on Thu (07 May) 08:30–10:15 | D3034 |

Mean state and variance

\[cv = \frac{\sigma}{\mu} \times 100 \]
Bimodal amplitude (GPCP)

White contours represent topography greater than 1Km.
Seasonality amplitude ratio has been reduced over East Africa.
Seasonal precipitation

Almost doubled short rains under quadruple CO$_2$
Precipitation response to CO$_2$
Moisture transport change

MFC-Shaded, MT-vectors
Changes

$\Delta MFC = -\nabla \cdot (\Delta \tilde{V} \tilde{q}) - \nabla \cdot (\Delta q \tilde{V})$

$\Delta MFC = \text{dyn} + \text{Thermo}$
Conclusions

✓ Precise representation of precipitation seasonal cycle over HOA adds confidence for future projected changes in seasonality.

✓ Seasonality amplitude ratio has been shifted over East Africa under greenhouse warming

✓ Future greenhouse warming leads to the intensified seasonal cycle of precipitation with a projected increase in the short rain season