GRACE-FO and Swarm Integrated Data Analysis Reveals Ionospheric Disturbances on the Accelerometer Measurements

M. Tzamali1, A. Peidou1, S. Pagiatakis1

1Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, Canada

EGU, Sharing Geosciences Online, May 2020
Motivation

• An unexpectedly strong development of a geomagnetic storm occurred on August 25-26, 2018.

• Disturbance Storm index Dst peak = -171 nT.

• During this storm, two satellite missions, GRACE-FO and Swarm, of a similar near-polar orbit and altitude cross the Earth.

How does this geomagnetic storm affect the measurements of these two missions?
Characteristics of the missions

GRACE-FO

2 identical satellites, GRACE C followed by D and vice versa

Spacecraft separation ~220 km

Altitude of 500 km

89° Inclination

Gravity field models

Swarm

3 identical satellites, Swarm A and Swarm C fly side by side at an altitude of 470km

Spacecraft separation of A and C ~1.4° in longitude

Swarm B orbits the Earth at 520km

Inclination (A,C) 87.3° and (B) 88.3°

Magnetic field models

• Instrumentation of GRACE-FO : MWI, LRI, ACC, SCA, TriG receiver
• Instrumentation of Swarm : ASM, VFM, STR, EFI, GPSR, LRR, ACC
GRACE-FO C Accelerometer

The ultra sensitive accelerometer of GRACE-FO measures the total non-gravitational acceleration.

The x axis (along track) is highly disturbed during the storm.

Raw measurements of non-gravitational accelerations of GRACE-FO C (Level 1B)

Residual series of non-gravitational accelerations of GRACE-FO C (Level 1B). The orbital period and semi-period have been removed and a low pass filter has been applied (cut-off frequency 80mHz).
What causes the disturbances on the accelerometer?

Non-gravitational accelerations: solar radiation pressure, drag and friction forces, interaction with solar wind, geometric effects.

The magnetic disturbances affect the **accelerometers** in an unknown way.

To understand these effects we combine measurements of the **magnetic field** and the **radial current densities**

Use of the measurements provided by **Swarm** constellation along the track of the satellites (this is of great importance due to the height dependency of the ionosphere)

It has been shown that **ionospheric dynamics affect Low Earth Orbit satellites.** (Ince, Pagiatakis, 2017) Calculation of the **force** that acts opposed to the magnetic pressure coming from the ionosphere could enhance our understanding on these effects.
Swarm A : Magnetic Disturbances B field (nT)

Residual time series of Vector Field Magnetometer (VFM) measurements have been used in the time interval: August 24 to August 29. (Level 1B)

- The main magnetic field has been extracted.
- It is assumed that the magnetic field signals connected to the currents do not evolve over 20s.
 (low pass filter with a cut-off frequency 50mHz)
- Magnetic Disturbances in By vector are stronger.

Disturbances in Bx vector of VFM frame
Disturbances in By vector of VFM frame
Disturbances in Bz vector of VFM frame
Swarm A: Magnetic Disturbances B field (nT)

Polar plots for Magnetic Disturbances in North Pole, latitudes 50° to 87°
Swarm A and C: Radial Current Density $J \, (\mu A/m^2)$

In highly conducting space plasmas, currents produce magnetic fields that modify the existing magnetic field.

Typical values in the auroral zone for radial current density for quiet days is of order $2 \, \mu A/m^2$.

During the storm these values reach $10 \, \mu A/m^2$.

Polar plot for Radial Current density, latitudes 50° to 86° (Level 2: non available data above 86°)
Ampère's force density \(J \times B \ (N/m^3) \)

Maxwell’s Equations

- \(\nabla \times B = \mu_0 J \) \quad \(\rightarrow \) \quad This equation is used to derive the radial current density from Level 2 data of Swarm

- \(\nabla \times E = \frac{\partial B}{\partial t} \) \quad \(\rightarrow \) \quad Electric monopole exists in space where there is a point charge or a source

- \(\nabla \cdot B = 0 \) \quad \(\rightarrow \) \quad The Earth’s magnetic field is dipole. There is no net flow across any closed surface

- \(\nabla \cdot E = \frac{\rho_c}{\varepsilon_0} \) \quad \(\rightarrow \) \quad We neglect the displacement current so that \(\nabla \cdot E = 0 \)

- Poynting Flux: \(S = \frac{1}{\mu_0} (E \times B) \) \quad \(\rightarrow \) \quad Represents the rate at which energy flows through a surface.

- Ampère's force: \(F = J \times B \) \quad \(\rightarrow \) \quad Current flows in the magnetosphere and the magnetopause apply stresses to the ionosphere. This force sets in motion the charged particles and accelerates them. As a response to this force, ionospheric plasma collides with the neutral particles setting them in motion thus, creating neutral winds in the upper atmosphere.
Ampère's force density $J \times B \ (N/m^3)$

- Geometrically, $J \times B$ is perpendicular to both J and B.
- Maximum value of F_x on the x-y plane $\sim 2.2 \times 10^6 \ N/m^3$.
- Maximum value of F_y on the x-y plane $\sim 0.7 \times 10^6 \ N/m^3$.
- For the preliminary analysis, the force has been calculated along track of Swarm A.
- Positive x values indicate a vector pointing in the same direction of flight.
Ampère's force density $J \times B \ (N/m^3)$

Polar plots for Ampère's force density $J \times B$ in North Pole, latitudes 50° to 86°

Ampère's force is an indication of the energy transfer in the ionosphere.

It establishes an equilibrium between the ionosphere and the magnetosphere.

Its highest values are found above 60°.

Calculation of F_x and F_y vectors indicates that this force acts on the horizontal plane.
GRACE C accelerometer and Ampère's force density

GRACE C measurements from the accelerometer show that the disturbances are time lagged towards Ampère's force density F_x. This could be due to many reasons. A further analysis is needed to investigate them.

The F_x disturbances in the beginning of the storm start around 2000 UTC, while the disturbances in the accelerometer of GRACE C around 2300 UTC.
Conclusions

- From the above analysis, magnetic, electric field and non-gravitational accelerations measurements are depicted before, during and after the storm. These measurements present a similar spatial behaviour in the perturbations caused by the storm.

- An analysis on Swarm C accelerometer shows a similar behavior as GRACE-FO accelerometer. Understanding how this common instrument is affected in both missions could be helpful to enhance our knowledge about satellite’s response to the ionospheric perturbations.

- The most disturbed axis in accelerometers during the storm, is the x axis, pointing along the track of the satellites.

- For the first time, Ampère's force $J \times B$ is calculated using measurements of Swarm A and Swarm C along the track. The larger this force, the larger the vertical current. This force accelerates the neutral particles in the upper atmosphere.

- A further analysis should be done on how this force acts on both constellations, especially on the their accelerometers.