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Motivation

* Emergency managers responders frequently request satellite-based crisis information for
flood monitoring to target the often-limited resources and to prioritize response actions
throughout a disaster situation.

* This project aims at improving existing satellite-based emergency mapping methods based on
Synthetic Aperture Radar (SAR) data by training, testing and validating novel machine learning
algorithms for the extraction of water bodies in case of flood situations.

* Particular focus is to automate the visual image analysis process by deploying Convolutional
Neural Networks (CNNs) for semantic segmentation of systematically acquired Sentinel-1A/B
SAR data at high spatial (20m) and temporal (3-5 days) resolution, including using information
from polarimetry and Optical data.
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Generating training data

* For supervised classification, the first step is to collect training data to “train” the classifier —
This involves collecting representative samples of backscatter for each landcover class of
interest.

* 4 classes: Permanent water, Flooded Open water, Urban area, Lowland area

* For Permanent water, Urban area and Lowland area, samples were drawn of areas which
remained unchanged before and after flood, with respect to backscatter values in the SAR

image as well as similarly in the Optical image.

* The Flooded Open water sample was selected based majorly on change on considerable
change in backscatter values of SAR image and also on visual effect from the Sentinel-2

images.



Training the model

* The concatenated labeled data was divided into training and test data based
on random sampling.

* The training data was now used to train a model using a neural network for
classification.



Sequential Neural Network Classifier

* Platforms used: Google Earth Engine, Tensorflow v2.2, Keras

* The model had a 64 node hidden layer, a dropout layer and an output layer,
with Softmax activation layer and using Adam optimizer.

 The model was trained for 10 epochs and evaluated on the test data set.



Region of Interest: Kerala
Floods, India, 2018

* Kerala Floods in Southern India from
July 2018 — August 2018.
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Satellite.

Sentinel-2 image during floods
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Sentinel-1 SAR image before Sentinel-1 SAR image during
floods 31.07.2018 floods 15.08.2018
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II Sampling training
areas

* Training areas were sampled belonging
to 4 classes: Permanent water, Flooded
Open water, Urban area, Lowland area




Classification results

* The trained model was used to classify
the validation dataset, with an accuracy

of 94%.

* The test data which comprised of the
rest of the points from the region of
interest was also classified.
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Future work

* Our aim is to automate the entire process for rapid flood detection using Machine
Learning.

 The idea is to incorporate data from all sources including SAR backscatter, coherence,
polarimetry, and Optical data.

e Our future goal is to construct a streaming data pipeline which can be used to rapidly
monitor flood situations as well train models for real-time detection of floods.
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