Persistent draining of the stratospheric 10Be reservoir after the Samalas volcanic eruption (1257 CE)

M. Baroni 1, E. Bard 1, J.-R. Petit 2, S. Viseur 1, ASTER Team 1

1CEREGE, Aix-en-Provence, France, 2IGE, Grenoble, France
10Be, a cosmogenic isotope, recorded in ice cores is a proxy of past solar activity

BUT

Its deposition is influenced by stratospheric volcanic eruptions because:

- 10Be get attached to aerosols to fall on the Earth’s surface
- The 10Be reservoir is located in the polar stratosphere

e.g. Poluianov et al. (2016), Webber and Higbie (2007)
The sulphate and 10Be concentrations were measured in the exact same samples at a sub-annual resolution.

- Significant relationship between the sulphate and 10Be concentrations for 14 volcanic eruptions detected over the last millennium in 3 different Antarctic ice cores/snow pits, at Vostok, Dome C and South Pole.

- Identification of stratospheric volcanic eruptions (most are unknown) in accordance with other independent methods (Sulphur isotopic anomaly of volcanic sulphate and bipolar volcanism).
Meaning of the relationship: $^{10}\text{Be} = a \ [\text{SO}_4^{2-}] + b$

‘a’ => efficiency of ^{10}Be washout from its stratospheric reservoir

‘b’ => indication on the size of the ^{10}Be stratospheric reservoir at the time of the eruption => ultimately depending on solar modulation
2) Classification of volcanic eruptions

Dendrogram which allowed to identify 4 groups of slopes that would be related to the characteristics of the volcanic eruptions (amount of SO$_2$, altitude)

Group of the lowest slopes: Kuwae and Samalas are the most important of the last millenium

Group of the steepest slopes
Unknown high-latitudes eruptions => vicinity of the 10Be reservoir

Negative slope
Unknown eruption in 1269CE, 10 years after Samalas (1257CE)

Group of moderated slopes for moderated eruptions which would be Pinatubo or Agung-like (Tens of Tg of SO$_2$, altitude<27km) :
The Samalas eruption (1257 CE)

158 +/- 17 Tg of SO$_2$, 43 km of altitude (Lavigne et al., 2013)

(ex: Pinatubo (1991) 15 Tg of SO$_2$, 25 km (e.g. Guo et al., 2004))

This eruption stand out of the other from many aspects (highest sulphur isotopic anomalie and near-null oxygen isotopic anomaly (e.g. : Savarino et al., 2003, Gautier et al., 2019) => exhaustion of regular oxidative pathways of SO$_2$ (amount effect) and/or altitude effect
Results

3) The Samalas (Indonesia), 1257 CE

- The Samalas has the lowest positive slope of the 14 we studied
- The negative slopes for eruptions following the Samalas eruption (in 1269CE and 1276CE) seems to reflect a disturbance of the 10Be polar stratospheric reservoir which would have been drained out for at least a decade.

\rightarrow effect of altitude (only gases > 30-35km of altitude and age of air masses of 5yrs) and/or amount of SO$_2$ emitted (delay of SO$_2$ oxidation)
Acknowledgements:
Sandrine Choy, Adrien Duvivier, Nina Davtian
C2FN
IPEV
ANR VOLSOL

Thanks