Investigating basal thaw as a potential driver of ice flow acceleration in Antarctica

Eliza J. Dawson¹ (ejdawson@stanford.edu), Dustin M. Schroeder¹, Winnie Chu^{1,2}, Elisa Mantelli³, Helene Seroussi⁴ ¹Stanford University, ²Georgia Institute of Technology, ³Princeton University, ⁴NASA Jet Propulsion Laboratory

The rate of basal sliding depends on the temperature at the ice-bed interface [1][2]. Frozen-bed regions are characterized by high basal traction and no sliding leading to reduced ice flow compared to regions with thawed beds. In Antarctica, some frozen-bed regions separate fast-flowing glaciers and ice streams [3]. Others separate inland catchments with thawed beds from the grounding zone of marine ice-sheet sectors [4]. We use the Ice Sheet System Model (ISSM) [5] to simulate the thawing of frozen bed regions and assess Antarctica's sensitivity to changes in basal thermal regime.

change in basal temperature.

Currently, large scale numerical ice sheet models are not capable of simulating the thermomechanical feedback when a region undergoes thawing. Instead, we model basal thawing by reducing the basal friction coefficient for all regions where the bed is just below freezing.

Frozen

3 Proof of concept experiment for Thwaites Glacier

1. ISSM basal temperatures are used to highlight areas where the bed is just below freezing.

Thawed

Basal Temperatures

*PMP = Pressure Melting Point

Acknowledgements We acknowledge the contribution from the NASA JPL/UCI ISSM team for developing the numerical ice sheet model applied in this study.

ISSM Set up: Mesh

- Adaptive horizontal mesh ranging from 3-30 km.
- 5 vertical layers with quadratic interpolation (P1 x P2).

3D Thermomechanical Model Simulations

- Higher Order Stress
- Balance Model [7][8] Thermal Model (Enthalpy
- formulation [9])
- Transient Model

Contact: Eliza Dawson (ejdawson@stanford.edu) Stanford University, Department of Geophysics

A change in ISSM inferred friction coefficient can be used as a proxy for a

ISSM inferred basal friction coefficient, calculated using an inversion to minimize the misfit between observed and modeled surface velocities [6]

> 2. In these frozen bed regions, the basal friction coefficient is reduced to the mean thawed friction value.

> > **Reduced Basal Friction**

Control: Model Inferred Basal Friction Coefficient

Coefficient

References [1] Mantelli et al. 2019 [2] Seroussi et al., 2013, [3] Joughin et al., 2009. [4] Pattyn, 2010. [5] Larour et at., 2012, [6] Morlighem et al 2013, [7] Blatter, 1995, [8] Pattyn, 2003, [9] Aschwanden et al., 2012, [10] Schroeder et al., 2016, [11] Peters et al., 2005, [12] MacGregor et al., 2016, [13] Matsouka et al., 2012, [14] Pritchard et al., 2014.

3. A transient model is run for hundreds of years to allow the ice sheet to respond to the friction perturbation

- (section 2).

- level rise.

 Model results show a bimodal distribution of friction coefficient between the frozen and thawed bed regions

• We model the effect of thawing regions where the bed is just below freezing by reducing the friction coefficient to a value that's characteristic of a thawed bed (section 3). • We use radar reflectivity to constrain regions where the bed is just below freezing since these observations are independent of the modeled bed thermal state (section 4). • Our simulations suggest that basal thaw is a mechanism that could contribute to widespread retreat and global sea