Sedimentary molybdenum and uranium sequestration in a non-euxinic coastal setting: role of the sulfate-methane transition zone

Sami A. Jokinen1,2, K. Koho3, Joonas J. Virtasalo3, Tom Gilbert3,4
1Aquatic Biogeochemistry Research Unit, University of Helsinki
2Lake and Marine Sediment Research Group, University of Turku
3Marine Geology, Geological Survey of Finland
4Tvärminne Zoological Station, University of Helsinki

1. INTRODUCTION
- Long-term paleo-redox records vital for mitigating global expansion of coastal hypoxia
- Molybdenum (Mo) and uranium (U) commonly used in sediment-based redox reconstructions (Algeo and Tribouxillard, 2009; Brüseke et al. 2020)
- Conservative behavior under oxic conditions
- Uniform concentrations in the ocean due to long residence times (>0.5 Ma)
- Conversion to particle-reactive species in specific redox zones (Fig. 1)

2. STUDY AREA
- Setting: Eutrophied coastal area in the Gulf of Finland (Baltic Sea)
- Rationale: Eutrophication has led to formation of a shallow SMTZ (relatively stable)

3. MATERIALS AND METHODS
- Sediment cores from four stations
 - Solid-phase + pore water samples
 - Solid-phase analyses:
 - Total contents of Mo and U + major constituents
 - Speciation of Mo and U (Sequential extraction)
 - Pore water analyses
 - Concentrations of Mo and U + major constituents
 - Calculation
 \[M_{SMTZ} = M_{sample} \times \frac{M_{SMTZ}}{M_{sample}} \]

4. RESULTS AND DISCUSSION
- Key feature: Simultaneous sequestration of both Mo and U within the SMTZ at two specific fronts coupled to increases in pore water H₂S concentration (Fig. 4)
- Diffusive fluxes of Mo and U = Mass accumulation rates of authigenic Mo and U
- Quasi-steady state
- Depletion of pore water Mo and U within the SMTZ

5. CONCLUSIONS
- Contrary to the existing theory, simultaneous uptake of Mo and U driven by H₂S levels
- Depth and intensity of the SMTZ control authigenic sequestration of both Mo and U
- Indirect link between bottom water oxygenation and Mo/U uptake
- Viable paleo-redox proxies (Mo more robust)
- Caveat: Limited temporal resolution due to the superimposed character of the signal

REFERENCES

FUNDING: