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e gravity moves or blocks downhill in rockslides and rockfall
* pebbles to large boulders saltate and impact on bedrock with

» boulder impacts into bedrock surfaces should cause significant bedrock
, likely shaping the even in the absence of water

» examples : bedrock gullies on steep hillslopes, plinth surfaces on
caprock-topped mesas, steep impact-crater slopes on planetary surfaces

» mechanistic models for fluvial and debris-flow incision exist, but similar
have not been evaluated




» discrete, cellular ( ) grain saltation trajectories

grain routing along dynamic 3D topo.
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A sampling bag

flume schematic
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> lab experiments (id view)
e tilted , dry grain entrance from top
» |ateral + vertical particle tracking by
machine cameras (  at 100Hz)
* repeated spatial foam erosion surveys
( at mm-resolution)

» model-calibration
. kinetic energy reduction by
impact shock; stochastic hop directions
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hop lengths + heights, and impact
+ deflection velocities only slightly

with hillslope angle
impact and deflection angles stay
relatively

increases by orders

of magnitude both with increasing
hillslope angle and grain size

grain hops [m]
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[ ] large experiments
few experiments
— DGE modeling
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* assumptions:
fixed erosivity and cell-size
has negligible
influence on rockfall
erosion for given grain size
(mass) will drive
topographic evolution
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» still to be analyzed: (different)
bedrock likely will result in
spatial heterogeneity
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o expelimentsss Modelled erosion patterns from| XXXt | of rockfall

> sullyshead (alcove).
» downslope
annel

impact erosion [m3]

Experimental |
erosion pattern
from 16.5t of
1.5cm dry
Granite grains

* modelling:
» alcove formation pronounced by
» channelization transiently grows downslope from hollow for
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experiments and model predict significant erosion by rockfall-driven

one large impact compared to several small ones of equal energy causes

more topography, which can further (fluvially-driven) erosion
transiently, (shell-shaped hollows) form at the dry rockfall entrance,
eventually overdeepen and fill with talus, preventing further erosion ( )

farther downslope, topographic feedbacks drive rockfall into incipient
, Which cause those channels to incise resulting in




