A Microphysics Guide to Cirrus – Part II:
Climatologies of Clouds and Humidity from Observations

Martina Krämer
Forschungszentrum Jülich
Institut für Energie- und Klimaforschung 7 (Stratosphäre), Jülich
&
JGU Mainz
Institut für Physik der Atmosphäre, Mainz
(m.kraemer@fz-juelich.de)

EGU 2020, 5 May, Vienna
A Microphysics Guide to Cirrus – Part II: Climatologies of Clouds and Humidity from Observations

Martina Krämer1,2, Christian Rolf1, Nicole Spelten1, Armin Afchine1, David Fahey3, Eric Jensen4, Sergey Khaykin5, Thomas Kuhn6, Paul Lawson7, Alexey Lykov8, Laura L. Pan4, Martin Riese1, Andrew Rollins3, Fred Stroh1, Troy Thornberry4, Veronika Wolf6, Sarah Woods7, Peter Spichtinger1, Johannes Quaas1, and Odran Sourdeval20

1Institute for Energy and Climate Research (IEK-7), Research Center Jülich, Jülich, Germany
2Institute for Atmospheric Physics (IPA), Johannes Gutenberg University, Mainz, Germany
3NOAA ESRL CSD, Boulder, USA
4NCAR, Atmospheric Chemistry Observations and Modeling Laboratory, Boulder, USA
5LATMOS/IPSLS, UVSQ, Sorbonne Université, CNRS, Guyancourt, France
6Luleå University of Technology, Division of Space Technology, Kiruna, Sweden
7SPEC Inc., Boulder, CO, USA
8Central Aerological Observatory (CAO), Department of Upper Atmospheric Layers Physics, Moscow, Russia
9Leipzig Institute for Meteorology (LIM), Universität Leipzig, Leipzig, Germany
10Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d’Optique Atmosphérique, F-59000 Lille, France

https://www.atmos-chem-phys-discuss.net/acp-2020-40/
Climatologies of Cirrus Clouds

from airborne in-situ and satellite remote sensing observations

- The climatologies serve as a guide to the properties of cirrus clouds.
- The new in-situ data base provides insights into boreal mid-latitudes and the tropics.
- The satellite-borne data set offers global and regional overviews.
AIRBORNE IN-SITU OBSERVATIONS

24 campaigns (1999-2017), 185 flights (~200 h in cirrus): IWC, N_{ice}, R_{H,ice}

Ice Water Content, Ice Crystal Number, Relative Humidity
CIRRUS OBSERVATIONS: VERTICAL PORTRAYAL

Characteristics expected from simulations (Cirrus Guide I, ACP) are visible in observations.
IN-SITU AND LIQUID ORIGIN CIRRUS

![Diagram showing in-situ and liquid origin cirrus](image)

Typical characteristics of cirrus types
in the initial stage

<table>
<thead>
<tr>
<th>ORIGIN</th>
<th>IWC</th>
<th>N_{ice}</th>
<th>R_{ice}</th>
<th>weather system</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow updraft (heterogeneous ice nucl.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-SITU LIQUID</td>
<td>low</td>
<td>few</td>
<td>large</td>
<td>frontals systems (WCBs)</td>
</tr>
<tr>
<td>IN-SITU LIQUID</td>
<td>high</td>
<td>more</td>
<td>larger</td>
<td></td>
</tr>
<tr>
<td>fast updraft (homogeneous ice nucl.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-SITU LIQUID</td>
<td>high</td>
<td>many</td>
<td>small</td>
<td>gravity waves, convection</td>
</tr>
<tr>
<td>IN-SITU LIQUID</td>
<td>high</td>
<td>more</td>
<td>small & larger</td>
<td></td>
</tr>
</tbody>
</table>

IWC high/low: above/below the IWC median; N_{ice} few/more/many: below/intermediate/above the 10 and 90% N_{ice} percentiles (see Figure 3).

R_{ice} small/large/larger: ice particles \(\lesssim 20\mu m \) dominate the PSD / ice particles \(\gtrsim 20\mu m \) dominate the PSD, max. size several hundred \(\mu m \) diameter / ice particles \(\gtrsim 20\mu m \) dominate the PSD, max. size up to thousand \(\mu m \) diameter (PSD: particle size distribution).

Refinement of results from Cirrus Guide I (ACP) and Luebke et al. (2016)
Cirrus Guide II:

- In-situ origin cirrus ➜ slight warming
- Liquid origin cirrus ➜ strong cooling effect
- How well are they represented in global models?
- Partitioning between in-situ and liquid origin cirrus?

Simulated radiative forcing
for exemplary in-situ slow and fast updraft and liquid origin cirrus.
SATELLITE REMOTE SENSING DATA BASE

N_{ice} (2006 - 2016)

DARDAR N-ice

Currently best view of global distribution of N_{ice}
COMPARING IN-SITU AND SATELLITE N_{ice}

Climatologies of frequencies in 1K T-bins

(data from five field campaigns)

- Overall good agreement between in-situ and DARDAR-N_{ice}
- The excess of N_{ice} by a factor of 1.73 in DARDAR is caused by the retrieval method
N_{ice} FROM SATELLITE

Global climatology of frequencies across the entire T-space

2006 – 2016

- Half of the cirrus clouds are found in the temperature range 224 - 242 K
- This warmest cirrus layer and contain significant amount of liquid origin cirrus
N_{ice} FROM SATELLITE

Regional and seasonal medians

<table>
<thead>
<tr>
<th>Region</th>
<th>in-situ adj. DARDAR-Nice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N_{ice}) (cm(^{-3}))</td>
</tr>
<tr>
<td></td>
<td>all Temp.</td>
</tr>
<tr>
<td>Arctic</td>
<td>0.036</td>
</tr>
<tr>
<td>Mid-lat North</td>
<td>0.057</td>
</tr>
<tr>
<td>Tropics</td>
<td>0.070</td>
</tr>
<tr>
<td>Mid-lat South</td>
<td>0.057</td>
</tr>
<tr>
<td>Antarctica</td>
<td>0.050</td>
</tr>
<tr>
<td>Global</td>
<td>0.056</td>
</tr>
</tbody>
</table>

(most frequent median \(N_{ice} \): median for the temperature range containing 50\% of the cirrus clouds)

- good agreement between most frequent in-situ and DARDAR-Nice medians - except tropics and Arctic
- seasonal medians do not greatly vary
CONCLUSIONS

- The global median N_{ice} of the most frequent cirrus is $0.031 \, \text{cm}^3$, in good agreement between satellite and in-situ observations.

- Regarding the frequent appearance of liquid origin cirrus together with their strong cooling effect is a motivation to investigate their influence on the overall cirrus radiative forcing on climate - do they switch the sign from warming to cooling?