

Platinum Group Element geochemistry to track magmatic evolution of the Yerington porphyry copper district (Nevada, USA)

Research School of Earth Sciences Monika Misztela (monika.misztela@anu.edu.au) Ian Campbell

© Authors. All rights reserved

Porphyry deposits

- Primary source of world's Cu, Au, Mo and major source of Ag and Sn
- Mostly associated with subduction zones
- Factors controlling formation of such deposits:
 - ✓ Volume of magma
 - ✓ Duration of magmatic activity
 - ✓ Oxidation state of magma
 - ✓ Water content of magma
 - Capacity of hydrothermal systems to transfer metals
 - ✓ Others

Ludington S., Mihalsky M. J., Hammarstrom J. M., Robinson G. R>, Frost T. P., Gans K. D., Miller R. J., Alexeiev D. 2012

Hypothesis

Timing of sulfide saturation, relative to volatile saturation is one of the most important factors controlling magma fertility and determines whether the ore is Au-Cu-Pd, Cu-Au or Cu only

PGE

- High partitioning into sulfides very sensitive indicators of sulfide saturation
- Easily affected by changes in the system
- Solubility in hydrothermal fluids is low less mobile than Cu and Au

Mungall J. E., Brenan J. M., 2014

Methods

XRF major elements

LA-ICP-MS

trace elements

Fire-assay isotope dilution PGE

QEMSCAN

mineral and elemental distribution maps, quantitative reports

Electron Microprobe

mineral phases

Yerington-location

Google Earth Pro

Tectonic setting

- Batholith in western Nevada within the volcanic-arc area
- 15 km in diameter, 7-8 km in the vertical dimension
- Emplaced into Triassic and Jurassic volcanic and sedimentary rocks ca. 168 Ma
- Part of a belt of Andeantype arc magmatism
- Cut by 3 sets of faults so it is now exposed in cross-section

LiuH., Liao R.-Q., Zhang L., Li C., Sun W., 2019

Schöpa A., Annen C., Dilles J. H., Blundy J., Sparks S., 2017

Schöpa et al., 2017

10 -

Modelling of fractionation requires to assume the amount of fractional crystallization at the moment of sulfide saturation. For that, 2 methods were used:

- Petrolog3 software modelling
- Rayleigh equation on incompatible elements Both methods estimated that magma had undergone ca. 70% of fractional crystallization at the moment of sulfide saturation (3 wt% MgO)

Fractionation modelling shows that the enrichment factor of metals will be close to 3-3.5.

Plotted ratio Pd/MgO against Pd/Pt divides suites into barren, Cu-only and Au-Cu.

All the samples from Yerington fall within, or very close, to the Cu-only field of the model, confirming the accuracy of the model with the characteristics of the deposit.

Conclusions

- Plots of whole-rock concentrations major, trace elemtns and REE show that all samples, including cumulate and volcanic rocks, are likely to be related by fractional crystallization
- 2) Scattering in concentrations of Cu, with no clear correlation, is attributed to hydrothermal mineralization overprinting and cannot be used to determine the timing of sulfide saturation
- 3) Due to the much higher partition coefficient, PGE were used to determine the timing of sulfide saturation
- 4) Late sulfide saturation indicates Cu-only mineralization

