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GDEMs display negative values in water 
coverage, land without current use, and 
flat and smooth surface like stadiums even 
some roads and building roofs (Fig. 1). 

2. Method

Precise representation of global terrain is of great significance for estimating global flood risk (Schumann and 
Bates, 2018). However, current Global Digital Elevation Models (GDEMs) are all Digital Surface Models 
(DSMs) in urban areas, which will cause substantial blockage in flood inundation. As the most vulnerable 
areas in flooding, urban areas have been neglected about their GDEMs accuracy. 

Fig. 6 Regression results of single city.

Fig. 8 Downtown areas transect profile (MERIT-UC corrected by target cities excluded model).

Fig. 7 Regression results and factor importance score of combined model by every five cities.  *NTL: night time light; POP: population density; BD: building density; BH: building height; SL: slope; ELE: elevation; N1-N8: neighbor elevation values of target 
pixel in 3×3 windows.

3. GDEMs Error Analysis

6. Conclusions

Target city train and test model showed R-squared values vary in the range of 0.43 – 0.75 in six 
cities (Fig 6.). This indicated that most of the variations (except two cities) of the predicted MERIT 
error can be explained by target city’s training data. 

Target city excluded training model showed that small error was overestimated and large error (more 
than 10 m) was underestimated. Predicted error was concentrated between 0-10 m, though actual 
error has a larger range up to 30 m in some cities (Fig. 7a).

Importance score indicated that Night time 
light and building density are significant 
factors (Fig. 7b). 

Fig. 9  RMSE (meter) of original and corrected MERIT (a) target city train and test, b) target 
city excluded).

Fig. 11 Maximum water depth for DEMs at calibrated models.

RMSE of MERIT-UC DEM decreased by up to 76%, which gave a much lower RMSE 
at 1.1 – 2.1. For new MERIT corrected based on target city excluded model, its RMSE 
decreased by 15%-67%. The reduced percentage is smaller than the model trained by 
target cities’ own data.

The MERIT-UC (MERIT, Urban Corrected) showed a lower value than the original MERIT 
DEM, moving towards DTM. However, overestimated of MERIT error was presented in 
some cities, especially in Beijing (Fig. 8).

With calibration, all the three GDEMs flood model can simulate a fair inundation 
extent regarding to that of the LIDAR. At building coverage areas, both MERIT-UC 
and TDM90 performed better than MERIT (Fig. 11). 

The LIDAR model was calibrated with the smallest RMSE which is 0.25m, while mean error 
is 0.0m. It is small, fitting in the water & wrack collection uncertainty, qualified to be used as 
the benchmark for GDEMs flood model calibration. The channel friction is 0.055 and 
floodplain friction is 0.06.  (Fig. 11 ).  In the calibrard GDEMs flood models, channel friction 
is 0.08 for both MERIT and MERIT-UC, whereas 0.07 achieved the smallest RMSE for TDX. 
Floodplain friction are 0.04 for MERIT, 0.02 for both MERIT-UC and TDM90.

Fig. 10 RMSE (left column) and Mean error (right column) of water 
depth for GDEMs.

In Carlisle, RMSE of MERIT-UC DEM is 2.38, reduced from the original 3.35. 
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1. In urban areas, RMSE of GDEMs error is in the range of 2.3 - 6.0  m. And there isn't a sinlge global DEM is better than 
others at all cities. Generally, TDX90 tends to have lower RMSE than others except cities which experienced significant 
construction activities over 2000 to 2015, like Beijing. In that case, MERIT can be a better option. 
2. The method proposed in this research can be used to remove MERIT error in urban areas effectively. 
3. The MERIT-UC DEM performs better than MERIT DEM in terms of inundation depth, but it didn't exceed the flooding 
performance by TanDEM-X, at least in this case of a small city.

Vertical: converted to EGM96, same grid as MERIT DEM. 

Fig. 5 showed the RMSE of 
GDEMs error is at range of 
2.3 – 6.0 m in studied cities. 

Fig. 1 Error of GDEMs in London.

The elimination of tree bias and absolute bias in MERIT was evidenced (Fig. 1, Fig. 3, Fig. 4). 

Fig. 4 Error histogram of GDEMs in London, Berlin.

Fig. 2 Profiles of downtown in London.
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Fig 2. indicated that building bias relates 
to building height and building density.

Fig. 3 
Profiles of vegetation 
coverage in London.

5. Corrected DEM Validation

1. Background 4. Error Estimation
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Flood evalution: City of Carlisle, UK.   Water & Wrack mark: aftermath of the flooding event over the 6th-7th 
January, 2005 (around 1 in 150 years return period) yielded 263 inundation data collection (Neal et al., 2009).

Fig. 5 RMSE GDEMs error in studied cities.
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The MERIT-UC DEM can reduce the RMSE from 2.58 m to 1.59 m, Mean 
error from 2.53 m to 1.22 m. However, TanDEM-X DEM achieved an even 
better result than corrected MERIT DEM, with a RMSE of 0.99 m and 0.92 m 
Mean error (Fig. 10). 

LISFLOOD-FP (Bate et al., 2010), specially a subgrid 
version (Neal et al, 2012) was used for GDEMs modeling. 

A wide range of friction numbers were used to bracket the best fit results. LIDAR model was calibrated with  smallest 
RMSE, whereas GDEMs models were calibrated with best fit extent benchmarking LIDAR model inundation extent.
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