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@ v @ \1, N \LQ The Cenomanian—-Turonian Oceanic Anoxic Event (OAE 2) was one of the most severe global crises of the Mesozoic Era. As
‘ well as the development of widespread marine anoxia and organic-carbon burial (typically recorded by the preservation of
organic-rich shales and a positive carbon isotope excursion — CIE), a number of other environmental perturbations took place,
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This enhanced organic-matter burial, potentially aided by carbon sequestration via increased silicate weathering, resulted in an abrupt
. pulse of global cooling within the overarching warming during the early part of OAE 2, dubbed the Plenus Cold Event (PCE).™ However,
MID-OCEAN . . . . . . .
RIDGE the exact timing of this cooling was likely geographically diachronous?
SOURCE OF RADIOGENIC OSMIUM FROM THE CONTINENTAL CRUST
SOURCE OF UNRADIOGENIC OSMIUM FROM THE PRIMITIVE MANTLE

of primitive basalts supply chiefly unradiogenic'*Os, continental weathering chiefly supplies radiogenic'®Os. The proportion of more Large Igneous PrOVinces (LIPS): represented das on the order Of 1 Mkm Of igneous material emplaced on tO/in to the

The ultimate driver of OAE 2 is largely thought to have been intense volcanic activity related to the formation of one or
! Simplified illustration of the main sources of osmium to the ocean (adapted from ref. 6). Mantle volcanism (or seawater—inte@
thevariousﬂuxescontrolstheseawater18705/18805 ratio (e.g. more submarine volcanism will decrease the ratio). Earth’S CI‘USt geologica"y rapidly (<1 Myl'). FOI‘ OAE 2, Sevel"a| Oceanic LIPS (Oceanic plateaUS) have been implicated.see 6—8
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A limited number of radioisotopic dates support a temporal link between oceanic-plateau activity and OAE 2; however, the stronger
evidence comes from a shift in the osmium- (Os-) isotope composition of seawater (Os(i)) to near mantle-like values (Figure 1) recorded in
multiple records of the OAE from several ocean basins.~'® This plateau emplacement is thought to have begun ~60 kyr prior to OAE 2.'°
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However, direct comparisons between Os-isotope records of volcanism and temperature change proxy trends have seldom
been undertaken for OAE 2.

This study presents new Os-isotope trends from a record of OAE 2 from the Bass River Core (ODP Leg 174 AX; NJ, USA), which was
deposited on the New Jersey Shelf area of the Proto North Atlantic (Figure 2). Previous studies have clearly defined the OAE 2 level by a
positive CIE>'" and highlighted the elevated sea-surface temperatures typical of OAE 2, as well as the Plenus Cold Event cooling?

A: ODP Leg 174AX (Bass River, NJ, USA)
B: Wunstorf Core (Germany)

C: lona Core (Texas, USA)

D: Portland #1 Core (Colorado, USA)

E: SH #1 Core (Colorado, USA)

F: Pont d'Issole/Vergons (France)

G: Clot Chevalier (France)

HA: High Arctic LIP

C-C: Caribbean-Columbian Plateau
M: Madagascar Plateau

0O-J: Greater Ontong-Java Plateau
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Using globally documented OAE 2 Os-isotope trends, we employ Os-isotope stratigraphy to refine the age constraints and
placement of the Cenomanian—Turonian boundary (CTB) in the Bass River record. Additionally, the osmium records of

Bass River and other examples of studied Cenomanian-Turonian records. Adapted from refs. 2 and 6. / V0|canic aCtiVity dare com pared fo the paIaQOtem peratu re trends frOm the same Site. _ﬂ
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Foraminiferal carbon-isotope data from ref. 11, organic carbon-isotope data from ref. 2 and this study, sea-surface temperature, and boreal-fauna abundance data from ref. 2.
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Results and Discussion: (Methods:
Re-Os analyses were performed by NTIMS techniques on a ThermoScientific Triton N-TIMS at
A relative enrichment in ‘common’1%20s, very low unradiogenic Osj ratios in the basal OAE 2 strata, and recovery to more radiogenic values in the Durham University, following carius-tube digestion with Cr"'03-H250a followed by Os
upper part of the OAE level are all consistent with other Cenomanian-Turonian (Os)) records (Figure 3) This suggests that global ocean (rather purification by solvent extraction and' microdistillation after ref. 15,.and Re purification by single-
than local) Os trends are recorded, with the low Osij) interpreted as marking intense oceanic-plateau activity, as for previous studies.”° begdlan icichignaroo gl iisatien i il Dy ctacetongiiiecedural blapieticle

19.442.0 pg for Re, 0.07+0.01 pg for Os, with a'®’0s/'*0s ratio of 0.16+0.05 (n=4). Mean standard
'8705/'880s (50 pg DROsS) and '®’Re/'®*Re (125 pg ReSTD) values were 0.160749+0.000159

There is no record of the initial shift to unradiogenic Os(i values below OAE 2 strata, which marks the onset of oceanic-plateau activity; this might be (1 0) and 0.59820+0.00082 (1 0), respectively, consistent with running averages for the lab!”

preserved in sediments deposited below the bottom of the Bass River core.
New organic carbon-isotope data for the Bass River core were generated on decarbonated
There is a negative CIE within the overarching positive excursion at Bass River, reminiscent of the negative CIE which is typically associated with BOWdﬁrSU oylanalE e nalermo DeiigcoupeEipiME s Isalink Chligassisp eyt Wl
the PCE at other OAE 2 sites. However, correlating the Bass River C- and Os-isotope records with other sites indicates that the Bass River negative < R /
CIE is too high with respect to the Os( curve for that excursion, and may mark a subsequent CIE sometimes seen just below the CTB (Figure 4).
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