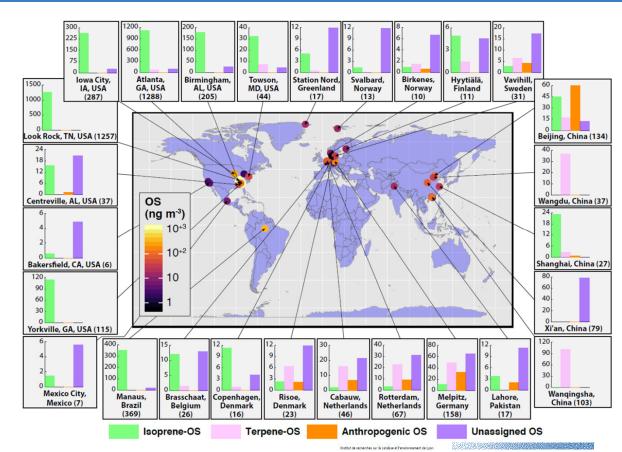
On the Formation and Detection of (Nitrooxy-)Organosulfates in Organic Aerosol Particles

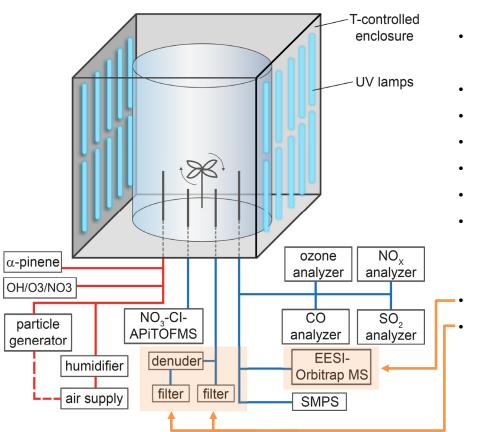
EGU General Assembly 2020

Martin Brüggemann¹, Matthieu Riva², Sébastien Perrier², Christian George², Hartmut Herrmann¹

¹Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Germany ²Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France

contact: brueggemann@tropos.de



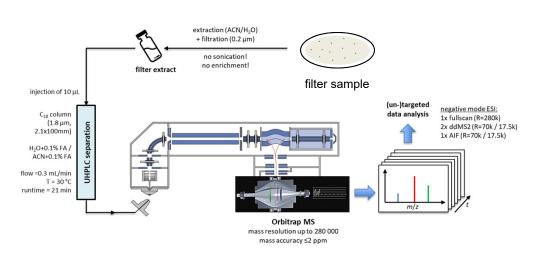

TROPOS
Leibniz Institute for
Tropospheric Research

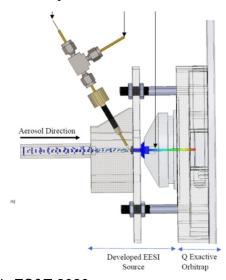
Organosulfates in Ambient Aerosol

- general formula: R-OSO₃H
- ubiquitously abundant in SOA
- formed via acid-driven
 multiphase reactions between
 reactive organic compounds (e.g.,
 epoxides, carbonyls) and acidic
 sulfate aerosol (linuma et al.,
 2007b, 2007a, Surratt et al., 2008,
 2010)
- recent reports suggest further formation pathways via SO₂ (Ye et al., 2018, Wang et al. 2019, Yao et al., 2019)
- aerosol acidity and liquid water content were shown to play a key role in OS formation (McNeill, 2015; McNeill et al., 2012)

Experimental

- experiments run in the TROPOS ACD chamber (ACD-C):
 Volume = 19 m³; RH = 55%; T = 20 °C
- α -pinene = 60 ppb; SO_2 = 15 ppb; NO = 15 ppb
- daytime chemistry: ~4.2 × 10⁶ OH cm⁻³
- nighttime chemistry: ~1.8 × 10⁹ NO₃ cm⁻³
- ozonolysis: O₃ ~ 100 ppb
- seeds: Na₂³⁴SO₄ / H₂SO₄ in different ratios to vary pH (1.2 ... 7)
- all experiments in continuous mode (flow = 190 LPM)

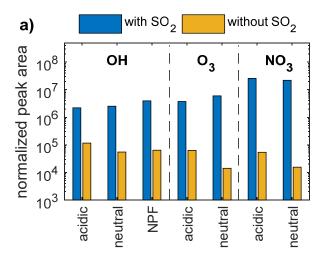

EESI-Orbitrap MS for online detection of (N)OSs parallel filter sampling with and without a denuder to remove gas-phase SO₂

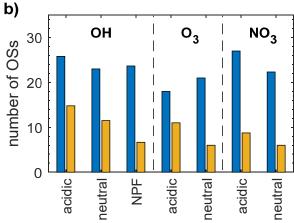

particle analysis by EESI-Orbitrap MS & LC-Orbitrap MS

LC-Orbitrap analysis of filter samples:

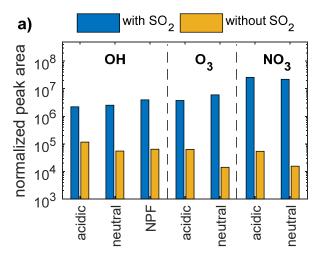
Brüggemann *et al.*, Environ. Chem. 2019, https://doi.org/10.1071/EN19089

EESI-Orbitrap MS for online OS detection:




Lee et al., ES&T 2020,

https://doi.org/10.1021/acs.est.9b07090



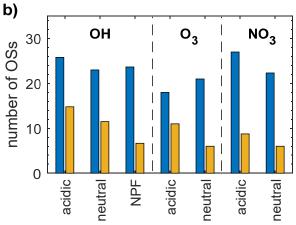
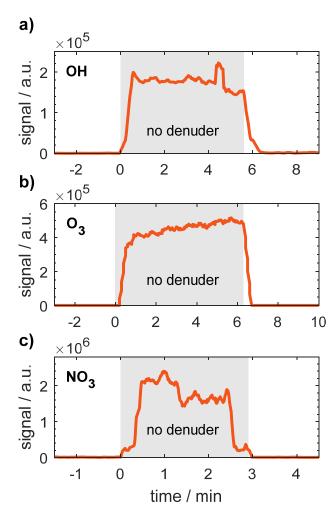

- the presence of gas-phase SO₂ strongly enhanced OS
 abundance by more than 3 orders of magnitude
- upon removal of SO₂, total number of detected OSs decreased by ≤72%
- largest effect of SO₂ observed for neutral seed particles
- pH dependency indicates that that S(IV) dissolves into the aqueous phase on the filter substrate and artificially enhances OS formation on the filter

Figure 1. a) Total peak areas of detected OSs normalized to the total particle mass. Panel b) Average number of detected OSs including isomeric species (i.e., signals with identical *m/z* but different retention times).

- because neutral seed particles were isotopically labeled (i.e., ³⁴S),
 all detected OSs must be derived, directly or indirectly, from gaseous SO₂
- contributions of isotopically labeled OSs were not larger than the expected natural abundances of ³⁴S (i.e., about 4.3%)
- importantly, OSs are not exclusively formed on the filter substrate but must also form through heterogeneous chemistry in the particles

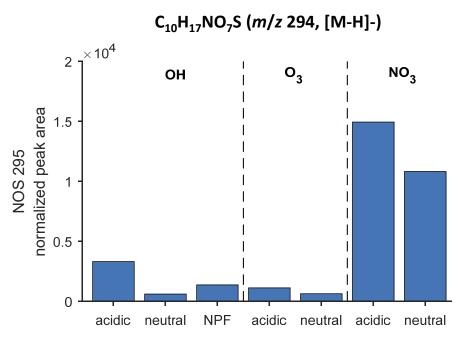
Figure 1. a) Total peak areas of detected OSs normalized to the total particle mass. Panel b) Average number of detected OSs including isomeric species (i.e., signals with identical m/z but different retention times).


Table 1. Enhancement factors for particle mass-normalized peak areas of single OS species in presence of SO_2 . OSs that were only detectable in presence of SO_2 are denoted with "+".

Oxidant	ОН			O ₃		NO ₃	
Acidity	acidic	neutral	NPF	acidic	neutral	acidic	neutral
C ₁₀ H ₁₈ O ₅ S	7.95	602	495	31.0	+	10.2	+
$C_{10}H_{16}O_7S$	7.08	+	23.4	8.07	51.7	25.3	+
$C_{10}H_{18}O_{7}S$	39.7	37.9	79.7	30.2	136	32.0	+
$C_{10}H_{17}NO_7S$	115	471	1400	1535	4930	1923	1880
$C_8H_{14}O_{10}S$	1.64	1.73	2.42	1.44	1.60	2.44	3.09
$C_{10}H_{17}NO_8S$	5.57	102	+	+	+	48.1	76.6
$C_{10}H_{17}NO_9S$	+	+	+	+	+	+	92.3
$C_{10H_{17}NO_{10}S}$	45.9	33.8	32.0	+	+	23.6	11.6
$C_{10}H_{22}O_{13}S$	3.69	1.00	+	+	+	+	+
$C_{18}H_{37}NO_7S$	+	+	+	+	+	+	+
$C_{20}H_{32}O_8S$	+	+	+	+	+	+	+
$C_{19}H_{38}O_7S_2$	23.2	0.95	+	+	+	+	+
$C_{19}H_{31}NO_{10}S$	+	+	+	+	+	+	+
C ₂₂ H ₄₀ O ₁₁ S	+	+	+	+	+	+	+

- for almost all OS species strong enhancement factors were observed in all experiments
- strong SO_2 enhancements observed for potential nitrooxy OSs (NOSs) with the general formula $C_{10}H_{17}NO_xS$ (with x = 7-10)
- SO₂ enhancements raise concerns on the actual abundance of (N)OSs in atmospheric aerosol, as SO₂ is commonly not removed during filter sampling

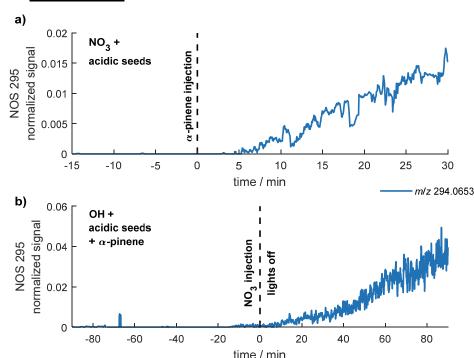
- without SO₂ removal, the number and abundance of OS signals rapidly increased
- => presence of gaseous SO₂ significantly affects the EESI
- SO₂ dissolution might play a key role
- kinetic accelerations are known to occur in ESI droplets, which might speed up artificial OS formation from SO₂
- => applying efficient reactive gas (i.e., SO₂, O₃, etc.) removal techniques are essential for EESI-MS detection of OSs


Figure 2. Total EESI-MS signal of m/z ratios corresponding to OSs formed in the ion source upon removal of the charcoal denuder during a) an OH oxidation experiment, b) an O_3 oxidation experiment, and c) a NO_2 oxidation experiment.

NOS formation in different chemical regimes

NOS 295:

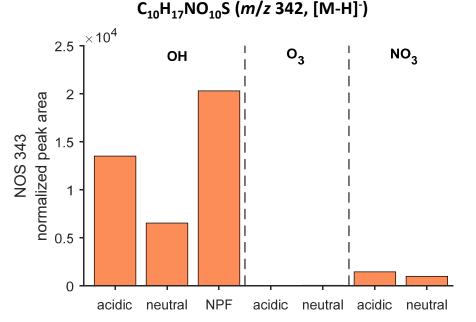
Figure 3. Particle mass-normalized peak areas of NOS 295 as determined from filter extracts by LC-Orbitrap MS. Gas-phase SO_2 was removed prior to particle sampling to avoid any sampling artifacts.


- NOS 295 (C₁₀H₁₇NO₇S) detected mainly during
 NO₃ oxidation of α-pinene
- largest total abundance of NOS 295 observed under acidic conditions

NOS formation in different chemical regimes

NOS 295:

Figure 4. Online detection of NOS 295 by EESI-Orbitrap MS during OH and NO3 oxidation of α -pinene in the presence of acidic seed particles. The NOS 295 signal is normalized to HSO_4^- ion signals (m/z 96.9601), originating from the seed particles.


- NOS 295 observed online by EESI-MS
- ion signal immediately increases upon injection of α-pinene into NO₃ filled chamber
- ion signal immediately increases upon switching from daytime chemistry (OH) to nighttime chemistry (NO₃)
- no signals observable during O₃ and OH chemistry in any experiment

NOS formation in different chemical regimes

NOS 343:

Figure 5. Particle mass-normalized peak areas of NOS 343 as determined from filter extracts by LC-Orbitrap MS. Gas-phase SO_2 was removed prior to particle sampling to avoid any sampling artifacts.

- NOS 343 (C₁₀H₁₇NO₁₀S) detected predominantly during OH oxidation of α-pinene
- largest total abundance of NOS 343 observed for new particle formation
- not detected online by EESI-MS probably because below detection limit

Summary

- the presence of gas-phase SO₂ during particle sampling on filters enhanced OS **abundance** by more than three orders of magnitude
- pH dependency indicates that that **S(IV)** dissolves into the aqueous phase on the filter substrate and artificially enhances OS formation on the filter
- SO₂ enhancements raise concerns on the actual abundance of (N)OSs
- presence of gaseous SO₂ significantly affects online detection of OSs by **EESI-MS** => efficient removal of reactive trace gases essential
- **NOS 295** ($C_{10}H_{17}NO_7S$) detected predominantly during **NO₃ oxidation** of α -pinene
- **NOS 343** ($C_{10}H_{17}NO_{10}S$) detected predominantly during **OH oxidation** of α -pinene

