

Machine learning as a tool for avalanche forecasting

Martin Hendrick¹, Cristina Pérez Guillén¹, Alec van Herwijnen¹, Jürg Schweizer¹

Abstract

- Assessing and forecasting avalanche hazard is crucial for the safety of people and infrastructure in mountain areas.
- Over 20 years of data covering snow precipitation, snowpack properties, weather, on-site observations, and avalanche danger has been collected in the context of operational avalanche forecasting for the Swiss Alps. The quality and breadth of this dataset makes it suitable for machine learning techniques.
- Forecasters mainly process a huge and redundant datasets "manually" to
 produce daily avalanche bulletins during the winter season. The purpose of this
 work is to provide the forecasters automated tools to support their work.
- By combining clustering and classification algorithms, we are able to reduce the amount of information that needs to be processed and identify relevant weather and snow patterns that characterize a given avalanche situation.

The project – Sarted in autumn 2019

20 years of data

Meteorological and snow data

182 automated stations (IMIS network) covering Swiss Alps and Jura measuring snowpack and meteorological features (e.g. snow depth, snow surface temperature, wind speed, relative humidity, ...)

Snow cover simulation (the SNOWPACK model)

 Snow stratigraphy is simulated using IMIS data

crucial information about snowpack properties and stability

Field observation

Experts carry out on-site manual measurements and observations (manual snow profile, avalanche danger level evaluation, ...)

The Swiss avalanche bulletin

- Map containing clusters (on the right: 3 clusters)
- Clusters depends on the avalanche situation
- Cluster: area characterized
 by same set

(danger level, avalanche problem, aspect & elevation of the problem)

targets for Machine Learning

The Swiss avalanche bulletin

Target: Avalanche danger prediction - method

Target: Avalanche danger prediction - results

Avalanche problem: the different types (dry-snow conditions)

New snow

Critical additional loading on the snowpack due to recent snow precipitation Old snow

Presence in the snowpack of persistent weak layer(s) along which a critical crack can propagate Wind slabs

Wind transported snow adds load on the top of a weak layer and builds a slab

Avalanche prone situations

Target: Avalanche problem (dry-snow conditions)

- Avalanche problem depends on: the amount of new snow, the presence or not of a persistent weak layer and wind transport of the snow
- Avalanche problem type: New snow, Wind slabs, persistent weak layer (old snow) and combination
- New snow is directly assessed from the data (ML not needed)
 - Persistent weak layer (pwl) predicted by using a random forest
 - Wind transport (future work)

Model performance (0 no pwl, 1 pwl)

pwl predicted by Random forest

### bas ! as d				
### trained mo	bael run on	test value	5	
	precision	recall	f1-score	support
0.0	0.89	0.89	0.89	2814
1.0	0.85	0.85	0.85	2030
accuracy			0.88	4844
macro avg	0.87	0.87	0.87	4844
weighted avg	0.88	0.88	0.88	4844
0 0				
### trained model run on trained values				
	precision	recall	f1-score	support
0.0	0.99	0.99	0.99	8577
	0.00			
1.0	0.99	0.98	0.99	5952
1.0	0.99	0.98	0.99	5952
1.0 accuracy	0.99	0.98	0.99 0.99	5952 14529
accuracy	0.99	0.98 0.99	0.99 0.99 0.99	5952 14529 14529
1.0 accuracy macro avg	0.99 0.99 0.99	0.98 0.99 0.99	0.99 0.99 0.99 0.99	5952 14529 14529 14529
1.0 accuracy macro avg weighted avg	0.99 0.99 0.99	0.98 0.99 0.99	0.99 0.99 0.99 0.99	5952 14529 14529 14529

Target: Persistent weak layer - results

bulletin

Target: Persistent weak layer - results

Target: Persistent weak layer - results

(cc)

bulletin

Outlook:

- Time series (under progress LSTM to predict danger level)
- Work on elevation/aspect
- Work on wind transport
- Explore other classifiers
- Explore unsupervised method to study data's natural patterns/clusters (under progress)

