FVM approach for solving the oblique derivative BVP on unstructured meshes above the real Earth’s topography

Matej Medľa, Karol Mikula, Róbert Čunderlík

Faculty of Civil Engineering
Slovak University of Technology in Bratislava, Slovakia
Outline

• We present a finite volume method (FVM) for the general Poisson problem with the Dirichlet and oblique derivative boundary condition

• We present local gravity field modelling in Slovakia based on the FVM approach considered on unstructured meshes above the real Earth’s topography
1. Mathematical formulation

• nonlinear satellite fixed geodetic boundary value problem
 \[-\Delta T(x) = 0, \quad x \in \Omega,\]
 \[\nabla T(x) \cdot V(x) = g(x), \quad x \in \Gamma,\]
 \[T_{SAT}(x) = 0, \quad x \in \partial\Omega\setminus\Gamma,\]
 where \(V(x) = n(x) + W(x)\)

• \(T\) - unknown disturbed potential

• \(V(x) = \frac{\nabla U(x)}{|\nabla U(x)|}\), where \(U\) is normal potential

• \(g(x)\) - gravity disturbances

Fig. 1: 2D illustration of a 3D computational domain \(\Omega\)
2. Generic Finite Volume method (FVM)

- Divide the computational domain Ω into the set of finite volumes p

\[0 = \iiint_{\Omega} -\Delta T \]

\[= - \sum_{\sigma \in \mathcal{G}(p) \setminus \mathcal{G}_\Gamma} \iint_{\sigma} \nabla T \cdot n_{p,\sigma} - \sum_{\sigma \in \mathcal{G}(p) \cap \mathcal{G}_\Gamma} \iint_{\sigma} \nabla T \cdot (n_{p,\sigma} + W - W) = (*) \]

- Where $\nabla T \cdot (n_{p,\sigma} + W) = \nabla T \cdot V = g$

- Where inner fluxes are approximated by some FV scheme $\mathcal{F}_{p,\sigma}(T) \approx \int_{\sigma} \nabla T \cdot n_{p,\sigma}$

\[(*) = - \sum_{\sigma \in \mathcal{G}(p) \setminus \mathcal{G}_\Gamma} \mathcal{F}_{p,\sigma}(T) - \sum_{\sigma \in \mathcal{G}(p) \cap \mathcal{G}_\Gamma} \iint_{\sigma} g - \nabla T \cdot W \]

Fig. 2: 2D illustration of a 3D FVM discretization of Ω
2. Generic Finite Volume method (FVM)

\[0 = \int_{\sigma} \nabla T \cdot W = \int_{\sigma} \nabla \Gamma \cdot (TW) - T \nabla \Gamma \cdot W \]

\[= \sum_{e \in \mathcal{E}(\sigma)} \int_{e} T \ W \cdot n_{\sigma,e} - \int_{\sigma} T \nabla \Gamma \cdot W = (*) \]

- Choice of central scheme
 - Approximate \(T \) on the edge \(e \) by constant \(T_e \)
 - Approximate \(T \) on the face \(\sigma \) by constant \(T_\sigma \)

\[(*) = \sum_{e \in \mathcal{E}(\sigma)} T_e \int_{e} W \cdot n_{\sigma,e} - T_\sigma \int_{\sigma} \nabla \Gamma \cdot W \]

Fig. 2: 2D illustration of a 3D FVM discretization of \(\Omega \)
2. Generic Finite Volume method (FVM)

• From a numerical analysis [1] we add a small amount of boundary diffusion for a stability purposes

• Resulting scheme

\[
\sum_{\sigma \in \mathcal{G}(p) \setminus \Gamma} F_{p,\sigma}(T) + \sum_{\sigma \in \mathcal{G}(p) \setminus \Gamma} \sum_{e \in \mathcal{E}(\sigma)} T_e \int_e W \cdot n_{\sigma,e} - T_{\sigma} \iiint_{\sigma} \nabla T \cdot W
\]

\[
+ R h_{\Gamma} \sum_{\sigma \in \mathcal{G}(p) \setminus \Gamma} \sum_{e \in \mathcal{E}(\sigma)} F_{p,\sigma}(T) = \sum_{\sigma \in \mathcal{G}(p) \setminus \Gamma} \iiint_{\sigma} g
\]
3. Choice of fluxes discretization

- Chose some finite volume approximation of inner volume fluxes $F_{p,\sigma}^\Omega (T)$
- Chose some finite volume approximation of boundary fluxes $F_{p,\sigma}^\Omega (T)$
- For our choices see [1]

$$
\sum_{\sigma \in \Xi(p) \setminus \bar{\Gamma}} F_{p,\sigma}^\Omega (T) + \sum_{\sigma \in \Xi(p) \setminus \bar{\Gamma}} \sum_{e \in \Xi(\sigma)} T_e \int_e W \cdot n_{\sigma,e} - T_\sigma \int_\sigma \nabla \cdot W + R_{\bar{\Gamma}} \sum_{\sigma \in \Xi(p) \setminus \bar{\Gamma}} \sum_{e \in \Xi(\sigma)} F_{p,\sigma}^\Omega (T) = \sum_{\sigma \in \Xi(p) \setminus \bar{\Gamma}} \int_\sigma g
$$

Fig. 2: 2D illustration of a 3D FVM discretization of Ω
4. Numerical results for local gravity field modelling in the area of Slovakia

![Fig. 3: Topography in the area of Slovakia](image)

<table>
<thead>
<tr>
<th>Boundaries</th>
<th>Resolution</th>
<th>#points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude direction</td>
<td>16.5° - 23°</td>
<td>0.002° (200 m)</td>
</tr>
<tr>
<td>Longitude direction</td>
<td>47.5° - 49.7°</td>
<td>0.002° (200 m)</td>
</tr>
<tr>
<td>Radial direction</td>
<td>Topography – 230 km</td>
<td>250 m – 1 km</td>
</tr>
</tbody>
</table>
4. Numerical results for local gravity field modelling in the area of Slovakia

Boundary conditions:

- Bottom boundary condition (the gravity disturbances) generated
 - inside Slovakia using the CBA2G software [2]
 - Outside Slovakia interpolated from the GGMPlus database [3]
- Upper boundary condition (disturbing potential) generated from the GO_CONS_GCF_2_DIR_R5 geopotential model up to d/o 300 [4]
- Side boundaries condition (disturbing potential) generated from the EIGEN-6C4 geopotential model up to d/o 2160 [5]
4. Numerical results for local gravity field modelling in the area of Slovakia

Fig. 5: Local quasigeoid model in the area of Slovakia obtained from the FVM solution
4. Numerical results for local gravity field modelling in the area of Slovakia

Statistics of the GNSS/Levelling test:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>For all points</th>
<th>Without outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of points</td>
<td>404</td>
<td>395</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.131 m</td>
<td>0.147 m</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.352 m</td>
<td>0.352 m</td>
</tr>
<tr>
<td>Range</td>
<td>0.221 m</td>
<td>0.205 m</td>
</tr>
<tr>
<td>Mean</td>
<td>0.231 m</td>
<td>0.231 m</td>
</tr>
<tr>
<td>Median</td>
<td>0.230 m</td>
<td>0.230 m</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.028 m</td>
<td>0.026 m</td>
</tr>
</tbody>
</table>

Fig. 6: GNSS/levelling test of the local quasigeoid model in Slovakia at 404 benchmarks
References

