Prokaryotic community composition and extracellular polymeric substances affect soil microaggregation in carbonate containing semiarid grasslands

Jeroen H.T. Zethof1, Antje Bettermann2, Cordula Vogel3, Doreen Babin2, Erik L.H. Cammeraat4, Albert Solé-Benet5, Roberto Lázaro6, Lourdes Luna7, Joseph Nesme8, Susanne K. Wochel9, Sören J. Sørensen1, Korinna Smalla12, and Karsten Kalbitz1

1 Institute of Soil Science and Site Ecology, TU Dresden, Dresden, Germany (jeroen.zethof@tu-dresden.de) / 2 Institute for Epidemiology and Pathogen Diagnostics, Julia-Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany / 3 Institute for Biodiversity and Ecosystem Dynamics (BIED), University of Amsterdam, Amsterdam, The Netherlands / 4 Estación Experimental de Zonas Áridas (CSIC), Almería, Spain / 5 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark / 6 Institute of Soil Science, Lehrides Universitat Hannover, Hannover, Germany

Introduction

Under semiarid climate conditions complex soil-vegetation interactions are present. Individual plant species enhance the surrounding area via litter input and soil-root interaction. Despite the better conditions in these resource islands, the microbial community experiences drought stress on a regular base. It has been suggested that microbes form a more stable environment in which to live by producing extracellular polymeric substances (EPS). The effects of EPS on aggregate stability seems to be twofold, as it adorns to mineral surfaces and forms bridges between mineral surfaces.

Objective: To determine the influence of two plant types on the prokaryotic community composition, EPS content and microaggregate stability, depending on parent material.

Methods

- Plants pruned and undergrowth clipped
- Sieving crust removed by gently brushing
- 60 250cc (5cm deep) soil cores taken and mixed in composite sample
- Illumina Sequencing of Bacterial and Archaeal 16S rRNA Gene Amplicons.
- EPS extracted after Redmile-Gordon et al. (2014) and total saccharide quantified after Dubois et al. (1956)
- Microaggregate fraction (≤ 250 µm) by dry-sieving
- Mean weight diameter of microaggregate fraction after fast wetting, by laser diffraction particle size scanner (Coulter LS20000)
- Microaggregate wettability after Bachmann et al. (2013)

EPS-saccharide content hardly changes over distance to the plant

Prokaryotic community differed between sites, not plant species

Structural equation modelling revealed:

- Differences in prokaryotic community composition linked to graphitic C content in Rambla Honda
- In Alboloduy, both organic C and total N drives differences in prokaryotic community composition
- EPS-saccharide content is driven by organic C content, independent of parent material
- At Alboloduy, EPS-saccharide content is related to differences in prokaryotic community
- Microaggregate wettability is related to EPS-saccharide content at Rambla Honda and Alboloduy - Anthyllis
- EPS-saccharide content drives microaggregation in the carbonate rich Alboloduy site.

Conclusion

OM drives soil EPS-saccharide content by shaping the soil prokaryotic community. Large contents of polyvalent cations, as found in carbonate enriched soils, promote the stabilizing effect of EPS on soil microaggregation.

References:


Part of DFG funded project „Extracellular polymeric substances and aggregate stability – how microorganisms affect soil erosion by water“ under grants KA7397/13-1 and EM 113/18-3