High-resolution numerical modelling of the altimetry-derived gravity disturbances and disturbing gradients

R. Čunderlík, M. Macák, M. Kollár, K. Mikula

Faculty of Civil Engineering
Slovak University of Technology in Bratislava, Slovakia

MSS model

altimetry-derived gravity data
Altimetry-gravimetry boundary-value problem

Numerical solution by Finite Volume Method (FVM)

Based on:

$\Delta T(x) = 0$, $x \in \mathbb{R}^3 \cdot \Omega$,

$T(x) = T^{MMS}(x) + \delta W$, $x \in \Gamma_S$ (sea),

$(\nabla T(x), s(x)) = -\delta g(x)$, $x \in \Gamma_L$ (land),

$T(x) = T^{SAT}(x)$, $x \in \Gamma_{SAT}$

\Rightarrow discretization of the computational domain into finite volumes

\Rightarrow local conservation of numerical fluxes
Boundary conditions:

Upper boundary (200 km)

Bottom boundary (ellipsoid)

T_{SAT}

T_{oceans}

δg_{lands}
Boundary conditions over oceans/seas:

Filtered MDT

Nonlinear filtering of disturbing potential
Discretization of the computational domain

Resolution: 1 x 1 arc min (horizontal)
250 m (radial)

\[21,600 \times 10,800 \times 400 = 93,312,000,000 \text{ unknowns}\]

Computational aspects

- large-scale parallel computations:
 - performed on 128 cores (32 MPI processors, each with 4 OpenMP threads)
 - took about 500 h (~ 21 days) of the CPU time

- computational domain divided into 30 subdomains
 (memory reduction by 80%, below 1 TB)
Gravity disturbances on the ellipsoid

(1x1 arc min)
Tzz on the ellipsoid

(1x1 arc min)
Tzz at 10 km

(1x1 arc min)
First derivatives on the ellipsoid (1x1 arc min)
Second derivatives on the ellipsoid (1x1 arc min)

\[T_{XX} \]

\[T_{YY} \]

\[T_{ZZ} \]
Second derivatives on the ellipsoid (1x1 arc min)

T_{XY}

T_{XZ}

T_{YZ}
Comparison of gravity disturbances with DTU15_GRAV
(1x1 arc min)
Thank you for your attention!

Acknowledgments:

Funded by the Government of Slovakia through an ESA Contract under the PECS (Plan for European Cooperating States), namely through the PECS contract SK2-08: "GOCE-based high-resolution gravity field modelling in a space domain (GOCE-numerics)". The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency. This work was also supported by the Grants APVV-15-0522 and VEGA 1/0486/20.